2,798 research outputs found
Different regimes of Forster energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals
We calculate the rate of non-radiative, Forster-type energy transfer (ET)
from an excited epitaxial quantum well (QW) to a proximal monolayer of
semiconductor nanocrystal quantum dots (QDs). Different electron-hole
configurations in the QW are considered as a function of temperature and
excited electron-hole density. A comparison of the theoretically determined ET
rate and QW radiative recombination rate shows that, depending on the specific
conditions, the ET rate is comparable to or even greater than the radiative
recombination rate. Such efficient Forster ET is promising for the
implementation of ET-pumped, nanocrystal QD-based light emitting devices.Comment: 14 pages, 4 figure
Effect of inter-wall surface roughness correlations on optical spectra of quantum well excitons
We show that the correlation between morphological fluctuations of two
interfaces confining a quantum well strongly suppresses a contribution of
interface disorder to inhomogeneous line width of excitons. We also demonstrate
that only taking into account these correlations one can explain all the
variety of experimental data on the dependence of the line width upon thickness
of the quantum well.Comment: 13 pages, 8 figures, Revtex4, submitted to PR
Excitonic effects in solids described by time-dependent density functional theory
Starting from the many-body Bethe-Salpeter equation we derive an
exchange-correlation kernel that reproduces excitonic effects in bulk
materials within time-dependent density functional theory. The resulting
accounts for both self-energy corrections and the electron-hole
interaction. It is {\em static}, {\em non-local} and has a long-range Coulomb
tail. Taking the example of bulk silicon, we show that the
divergency is crucial and can, in the case of continuum excitons, even be
sufficient for reproducing the excitonic effects and yielding excellent
agreement between the calculated and the experimental absorption spectrum.Comment: 6 pages, 1 figur
Exact exchange-correlation potential for a time-dependent two electron system
We obtain an exact solution of the time-dependent Schroedinger equation for a
two-electron system confined to a plane by an isotropic parabolic potential
whose curvature is periodically modulated in time. From this solution we
compute the exact time-dependent exchange correlation potential v_xc which
enters the Kohn-Sham equation of time-dependent density functional theory. Our
exact result provides a benchmark against which various approximate forms for
v_xc can be compared. Finally v_xc is separated in an adiabatic and a pure
dynamical part and it is shown that, for the particular system studied, the
dynamical part is negligible.Comment: 23 pages, 6 figure
Scattering of a proton with the Li4 cluster: non-adiabatic molecular dynamics description based on time-dependent density-functional theory
We have employed non-adiabatic molecular dynamics based on time-dependent
density-functional theory to characterize the scattering behaviour of a proton
with the Li cluster. This technique assumes a classical approximation for
the nuclei, effectively coupled to the quantum electronic system. This
time-dependent theoretical framework accounts, by construction, for possible
charge transfer and ionization processes, as well as electronic excitations,
which may play a role in the non-adiabatic regime. We have varied the incidence
angles in order to analyze the possible reaction patterns. The initial proton
kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects.
For all the incidence angles considered the proton is scattered away, except in
one interesting case in which one of the Lithium atoms captures it, forming a
LiH molecule. This theoretical formalism proves to be a powerful, effective and
predictive tool for the analysis of non-adiabatic processes at the nanoscale.Comment: 18 pages, 4 figure
Many-body diagrammatic expansion in a Kohn-Sham basis: implications for Time-Dependent Density Functional Theory of excited states
We formulate diagrammatic rules for many-body perturbation theory which uses
Kohn-Sham (KS) Green's functions as basic propagators. The diagram technique
allows to study the properties of the dynamic nonlocal exchange-correlation
(xc) kernel . We show that the spatial non-locality of is
strongly frequency-dependent. In particular, in extended systems the
non-locality range diverges at the excitation energies. This divergency is
related to the discontinuity of the xc potential.Comment: 4 RevTeX pages including 3 eps figures, submitted to Phys. Rev. Lett;
revised version with new reference
Vortex microavalanches in superconducting Pb thin films
Local magnetization measurements on 100 nm type-II superconducting Pb thin
films show that flux penetration changes qualitatively with temperature. Small
flux jumps at the lowest temperatures gradually increase in size, then
disappear near T = 0.7Tc. Comparison with other experiments suggests that the
avalanches correspond to dendritic flux protrusions. Reproducibility of the
first flux jumps in a decreasing magnetic field indicates a role for defect
structure in determining avalanches. We also find a temperature-independent
final magnetization after flux jumps, analogous to the angle of repose of a
sandpile.Comment: 6 pages, 5 figure
Commensurate and Incommensurate Vortex States in Superconductors with Periodic Pinning Arrays
As a function of applied field, we find a rich variety of ordered and
partially-ordered vortex lattice configurations in systems with square or
triangular arrays of pinning sites. We present formulas that predict the
matching fields at which commensurate vortex configurations occur and the
vortex lattice orientation with respect to the pinning lattice. Our results are
in excellent agreement with recent imaging experiments on square pinning arrays
[K. Harada et al., Science 274, 1167 (1996)].Comment: 9 pages, 3 figures. Accepted to Physical Review
The Anderson Model out of equilibrium: Time dependent perturbations
The influence of high-frequency fields on quantum transport through a quantum
dot is studied in the low-temperature regime. We generalize the non crossing
approximation for the infinite-U Anderson model to the time-dependent case. The
dc spectral density shows asymmetric Kondo side peaks due to photon-assisted
resonant tunneling. As a consequence we predict an electron-photon pump at zero
bias which is purely based on the Kondo effect. In contrast to the resonant
level model and the time-independent case we observe asymmetric peak amplitudes
in the Coulomb oscillations and the differential conductance versus bias
voltage shows resonant side peaks with a width much smaller than the tunneling
rate. All the effects might be used to clarify the question whether quantum
dots indeed show the Kondo effect.Comment: 13 pages, REVTEX 3.0, 5 figure
- …
