6,037 research outputs found
Coherent Exciton Lasing in ZnSe/ZnCdSe Quantum Wells?
A new mechanism for exciton lasing in ZnSe/ZnCdSe quantum wells is proposed.
Lasing, occurring below the lowest exciton line, may be associated with a
BCS-like condensed (coherent) exciton state. This state is most stable at low
temperatures for densities in the transition region separating the exciton Bose
gas and the coherent exciton state. Calculations show the gain region to lie
below the exciton line and to be separated from the absorption regime by a
transparency region of width, for example, about 80 meV for a 90 Angstrom
ZnSe/Zn_(0.75)Cd_(0.25)Se quantum well. Experimental observation of the
transparency region using differential spectroscopy would confirm this picture.Comment: 9 pages + 3 figs contained in 4 postscript files to appear Appl.
Phys. Lett. March 13, 199
Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach
Local meteorological conditions and biospheric activity are tightly coupled. Understanding these links is an essential prerequisite for predicting the Earth system under climate change conditions. However, many empirical studies on the interaction between the biosphere and the atmosphere are based on correlative approaches that are not able to deduce causal paths, and only very few studies apply causal discovery methods. Here, we use a recently proposed causal graph discovery algorithm, which aims to reconstruct the causal dependency structure underlying a set of time series. We explore the potential of this method to infer temporal dependencies in biosphere-atmosphere interactions. Specifically we address the following questions: How do periodicity and heteroscedasticity influence causal detection rates, i.e. the detection of existing and non-existing links? How consistent are results for noise-contaminated data? Do results exhibit an increased information content that justifies the use of this causal-inference method? We explore the first question using artificial time series with well known dependencies that mimic real-world biosphere-atmosphere interactions. The two remaining questions are addressed jointly in two case studies utilizing observational data. Firstly, we analyse three replicated eddy covariance datasets from a Mediterranean ecosystem at half hourly time resolution allowing us to understand the impact of measurement uncertainties. Secondly, we analyse global NDVI time series (GIMMS 3g) along with gridded climate data to study large-scale climatic drivers of vegetation greenness. Overall, the results confirm the capacity of the causal discovery method to extract time-lagged linear dependencies under realistic settings. The violation of the method's assumptions increases the likelihood to detect false links. Nevertheless, we consistently identify interaction patterns in observational data. Our findings suggest that estimating a directed biosphere-atmosphere network at the ecosystem level can offer novel possibilities to unravel complex multi-directional interactions. Other than classical correlative approaches, our findings are constrained to a few meaningful set of relations which can be powerful insights for the evaluation of terrestrial ecosystem models
Recommended from our members
Identifying causal gateways and mediators in complex spatio-temporal systems
Different regimes of Forster energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals
We calculate the rate of non-radiative, Forster-type energy transfer (ET)
from an excited epitaxial quantum well (QW) to a proximal monolayer of
semiconductor nanocrystal quantum dots (QDs). Different electron-hole
configurations in the QW are considered as a function of temperature and
excited electron-hole density. A comparison of the theoretically determined ET
rate and QW radiative recombination rate shows that, depending on the specific
conditions, the ET rate is comparable to or even greater than the radiative
recombination rate. Such efficient Forster ET is promising for the
implementation of ET-pumped, nanocrystal QD-based light emitting devices.Comment: 14 pages, 4 figure
Quantum simulations of the superfluid-insulator transition for two-dimensional, disordered, hard-core bosons
We introduce two novel quantum Monte Carlo methods and employ them to study
the superfluid-insulator transition in a two-dimensional system of hard-core
bosons. One of the methods is appropriate for zero temperature and is based
upon Green's function Monte Carlo; the other is a finite-temperature world-line
cluster algorithm. In each case we find that the dynamical exponent is
consistent with the theoretical prediction of by Fisher and co-workers.Comment: Revtex, 10 pages, 3 figures (postscript files attached at end,
separated by %%%%%% Fig # %%%%%, where # is 1-3). LA-UR-94-270
Anisotropic two-dimensional Heisenberg model by Schwinger-boson Gutzwiller projected method
Two-dimensional Heisenberg model with anisotropic couplings in the and
directions () is considered. The model is first solved in the
Schwinger-boson mean-field approximation. Then the solution is Gutzwiller
projected to satisfy the local constraint that there is only one boson at each
site. The energy and spin-spin correlation of the obtained wavefunction are
calculated for systems with up to sites by means of the
variational Monte Carlo simulation. It is shown that the antiferromagnetic
long-range order remains down to the one-dimensional limit.Comment: 15 pages RevTex3.0, 4 figures, available upon request, GWRVB8-9
Statistical Mechanics and Information-Theoretic Perspectives on Complexity in the Earth System
Peer reviewedPublisher PD
Independent from muscle power and balance performance, a creatinine clearance below 65ml/min is a significant and independent risk factor for falls and fall-related fractures in elderly men and women diagnosed with osteoporosis
Summary: We assessed in a cross-sectional study in elderly men and women with osteoporosis, the association between the creatinine clearance (CrCl) and the performance in different balance and muscle power and function tests and found that a decreasing creatinine clearance was significantly associated with lower balance and muscle power. Introduction: To determine if a creatinine clearance of <65ml/min is significantly associated with decreasing muscle power and balance and an increased risk for falls and fractures. Methods: We assessed in a cross-sectional-study in 1781 German osteoporotic patients, the association between the CrCl, the physical performance, and the number of falls and fractures. Results: Controlling for age, gender, BMI, and osteoporosis treatment (fracture analysis only), a decreasing CrCl was associated with lower physical performance in the timed-up-and-go test (corr −0.2337, P < 0.0001), chair-rising test (corr −0.1706, P < 0.001), and tandem-stand test (corr 0.2193, P < 0.0001), and a CrCl of <65ml/min was associated with a significantly higher risk for falls (47.7% vs. 36.2%, P = 0.0008) and fall-related fractures (33.1% vs. 22.9%, P = 0.0003) compared with a CrCl of ≥65ml/min. Conclusions: In this study, we found a significant gender-independent correlation between decreasing CrCl and lower performance in balance and muscle power tests. Reduced muscle power and balance may therefore be involved in the low creatinine clearance associated increased risk for falls and fall-related fractures. Furthermore, we found that a CrCl <65ml/min., independent from the performance in muscle power, muscle function, and balance tests, is a significant risk factor for falls and fracture
Recommended from our members
Real-world heart rate norms in the Health eHeart study.
Emerging technology allows patients to measure and record their heart rate (HR) remotely by photoplethysmography (PPG) using smart devices like smartphones. However, the validity and expected distribution of such measurements are unclear, making it difficult for physicians to help patients interpret real-world, remote and on-demand HR measurements. Our goal was to validate HR-PPG, measured using a smartphone app, against HR-electrocardiogram (ECG) measurements and describe out-of-clinic, real-world, HR-PPG values according to age, demographics, body mass index, physical activity level, and disease. To validate the measurements, we obtained simultaneous HR-PPG and HR-ECG in 50 consecutive patients at our cardiology clinic. We then used data from participants enrolled in the Health eHeart cohort between 1 April 2014 and 30 April 2018 to derive real-world norms of HR-PPG according to demographics and medical conditions. HR-PPG and HR-ECG were highly correlated (Intraclass correlation = 0.90). A total of 66,788 Health eHeart Study participants contributed 3,144,332 HR-PPG measurements. The mean real-world HR was 79.1 bpm ± 14.5. The 95th percentile of real-world HR was ≤110 in individuals aged 18-45, ≤100 in those aged 45-60 and ≤95 bpm in individuals older than 60 years old. In multivariable linear regression, the number of medical conditions, female gender, increasing body mass index, and being Hispanic was associated with an increased HR, whereas increasing age was associated with a reduced HR. Our study provides the largest real-world norms for remotely obtained, real-world HR according to various strata and they may help physicians interpret and engage with patients presenting such data
Darstellung und Struktur von (CH3NH3)3PrCl6. 2 H20
(CH3NH3)3PrCl6 · 2 H2O has been prepared as light green, air sensitive crystals by the reaction of PrCl3·xH2O with [CH3NH3]Cl in ethanol. The compound was characterized by crystal structure determination. Crystal data: monoclinic space group I 2/a, Z = 8. Lattice constants: a = 1963.3(4), b = 925.9(3), c = 1954.3(4) pm, β = 90.56(1)°. The compound forms [PrCl4(H2O)2]--chains where two Pr3+-ions are connected via two chlorine atoms. The magnetic behaviour of (CH3NH3)3PrCl6· 2H2O has been studied
- …
