594 research outputs found

    In the Shadow of Brown

    Get PDF

    Relationship between particulate matter and childhood asthma – basis of a future warning system for central Phoenix

    Get PDF
    Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM<sub>10</sub>) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM<sub>10</sub> that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM<sub>10</sub> concentration and asthma attacks. For children ages 5–17, a significant relationship was discovered between the two, while children ages 0–4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM<sub>10</sub> (36 μg m<sup>&minus;3</sup>). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5–17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area

    Sunscreens - Which and what for?

    Get PDF
    It is well established that sun exposure is the main cause for the development of skin cancer. Chronic continuous UV radiation is believed to induce malignant melanoma, whereas intermittent high-dose UV exposure contributes to the occurrence of actinic keratosis as precursor lesions of squamous cell carcinoma as well as basal cell carcinoma. Not only photocarcinogenesis but also the mechanisms of photoaging have recently become apparent. In this respect the use of sunscreens seemed to prove to be more and more important and popular within the last decades. However, there is still inconsistency about the usefulness of sunscreens. Several studies show that inadequate use and incomplete UV spectrum efficacy may compromise protection more than previously expected. The sunscreen market is crowded by numerous products. Inorganic sunscreens such as zinc oxide and titanium oxide have a wide spectral range of activity compared to most of the organic sunscreen products. It is not uncommon for organic sunscreens to cause photocontact allergy, but their cosmetic acceptability is still superior to the one given by inorganic sunscreens. Recently, modern galenic approaches such as micronization and encapsulation allow the development of high-quality inorganic sunscreens. The potential systemic toxicity of organic sunscreens has lately primarily been discussed controversially in public, and several studies show contradictory results. Although a matter of debate, at present the sun protection factor (SPF) is the most reliable information for the consumer as a measure of sunscreen filter efficacy. In this context additional tests have been introduced for the evaluation of not only the protective effect against erythema but also protection against UV-induced immunological and mutational effects. Recently, combinations of UV filters with agents active in DNA repair have been introduced in order to improve photoprotection. This article reviews the efficacy of sunscreens in the prevention of epithelial and nonepithelial skin cancer, the effect on immunosuppression and the value of the SPF as well as new developments on the sunscreen market. Copyright (C) 2005 S. Karger AG, Basel

    Antimicrobial Resources for Disinfection of Potable Water Systems for Future Spacecraft

    Get PDF
    As human exploration adventures beyond low earth orbit, life support systems will require more innovation and research to become self-sustaining and durable. One major concern about future space travel is the ability to store and decontaminate water for consumption and hygiene. This project explores materials and technologies for possible use in future water systems without requiring point-of-use (POU) filtering or chemical additives such as iodine or silver that require multiple doses to remain effective. This experimentation tested the efficacy of a variety of antimicrobial materials against biofilm formation in a high shear CDC Biofilm Reactor (CBR) and some materials in a low shear Drip Flow Reactor (DFR) which(also utilizes ultra violet light emitting diodes (UVLEDs) as an antimicrobial resource. Most materials were tested in the CBR using the ASTM E 2562-07 1method involving the Pseudomonas aeruginosa and coupon samples that vary in their antimicrobial coatings and surface layer topographies. In a controlled environmental chamber (CEC), the CBR underwent a batch phase, continuous flow phase (CFP), and a harvest before analysis. The DFR portion of this experimentation was performed in order to assess the antimicrobial capabilities of ultraviolet-A LEDs (UV-A) in potable water systems. The ASTM E 2647-08 was modified in order to incorporate UV-A LEDs and to operate as a closed, re-circulating system. The modified DFR apparatus that was utilized contains 4 separate channels each of which contain 2 UV-A LEDs (1 chamber is masked off to serve as a control) and each channel is equipped with its own reservoir and peristaltic pump head. The 10 DFR runs discussed in this report include 4 initial experimental runs that contained blank microscope slides to test the UVA LEDs alone, 2 that incorporated solid silver coupons, 2 that utilized titanium dioxide (Ti02) coupons as a photocatalyst, and 2 runs that utilized silver coated acrylic slides. Both the CBR and DFR experiments were analyzed for microbial content via heterotrophic plate counts (HPC) and acridine orange direct counts (AODC). Ofthe materials used in the CBR, only two materials performed as anti~icrobials under high shear conditions (a reduction of 5 or more logs) showing a>7 log reduction in viable microbes

    On the Method of Scoring and Use of the Observed Information in Obtaining Maximum Likelihood Estimates

    Get PDF
    1 online resource (PDF, 11 pages

    Longitudinal Analysis of Friendship Networks

    Get PDF
    1 online resource (PDF, 21 pages

    Analysis of Transformed Data

    Get PDF
    1 online resource (PDF, 22 pages

    Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process

    Get PDF
    for the ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australian and New Zealand Intensive Care Society (ANZICS)BACKGROUND Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. METHODS Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. RESULTS The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag ₄₀ and 35% had autocorrelation through to lag ₄₀; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. CONCLUSIONS The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues.John L Moran, Patricia J Solomo
    corecore