214 research outputs found
Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands
The bias-dependent transport properties of short poly(G)-poly(C) A-DNA
strands attached to Au electrodes are investigated with first principles
electronic transport methods. By using the non- equilibrium Green's function
approach combined with self-interaction corrected density functional theory, we
calculate the fully self-consistent coherent I-V curve of various double-strand
polymeric DNA fragments. We show that electronic wave-function localization,
induced either by the native electrical dipole and/or by the electrostatic
disorder originating from the first few water solvation layers, drastically
suppresses the magnitude of the elastic conductance of A-DNA oligonucleotides.
We then argue that electron transport through DNA is the result of
sequence-specific short-range tunneling across a few bases combined with
general diffusive/inelastic processes.Comment: 15 pages, 13 figures, 1 tabl
First-principles study of high conductance DNA sequencing with carbon nanotube electrodes
Rapid and cost-effective DNA sequencing at the single nucleotide level might
be achieved by measuring a transverse electronic current as single-stranded DNA
is pulled through a nano-sized pore. In order to enhance the electronic
coupling between the nucleotides and the electrodes and hence the current
signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes
(CNTs) as electrodes. We then investigate the electron transport properties of
nucleotides sandwiched between such electrodes by using first-principles
quantum transport theory. In particular we consider the extreme case where the
separation between the electrodes is the smallest possible that still allows
the DNA translocation. The benzene-like ring at the end cap of the CNT can
strongly couple with the nucleobases and therefore both reduce conformational
fluctuations and significantly improve the conductance. The optimal molecular
configurations, at which the nucleotides strongly couple to the CNTs, and which
yield the largest transmission, are first identified. Then the electronic
structures and the electron transport of these optimal configurations are
analyzed. The typical tunneling currents are of the order of 50 nA for voltages
up to 1 V. At higher bias, where resonant transport through the molecular
states is possible, the current is of the order of several A. Below 1 V
the currents associated to the different nucleotides are consistently
distinguishable, with adenine having the largest current, guanine the
second-largest, cytosine the third and finally thymine the smallest. We further
calculate the transmission coefficient profiles as the nucleotides are dragged
along the DNA translocation path and investigate the effects of configurational
variations. Based on these results we propose a DNA sequencing protocol
combining three possible data analysis strategies.Comment: 12 pages, 17 figures, 3 table
DNAs of simian virus 40 and polyoma direct the synthesis of viral tumor antigens and capsid proteins in Xenopus oocytes.
DNA nucleotide-specific modulation of \mu A transverse edge currents through a metallic graphene nanoribbon with a nanopore
We propose two-terminal devices for DNA sequencing which consist of a
metallic graphene nanoribbon with zigzag edges (ZGNR) and a nanopore in its
interior through which the DNA molecule is translocated. Using the
nonequilibrium Green functions combined with density functional theory, we
demonstrate that each of the four DNA nucleotides inserted into the nanopore,
whose edge carbon atoms are passivated by either hydrogen or nitrogen, will
lead to a unique change in the device conductance. Unlike other recent
biosensors based on transverse electronic transport through DNA nucleotides,
which utilize small (of the order of pA) tunneling current across a nanogap or
a nanopore yielding a poor signal-to-noise ratio, our device concept relies on
the fact that in ZGNRs local current density is peaked around the edges so that
drilling a nanopore away from the edges will not diminish the conductance.
Inserting a DNA nucleotide into the nanopore affects the charge density in the
surrounding area, thereby modulating edge conduction currents whose magnitude
is of the order of \mu A at bias voltage ~ 0.1 V. The proposed biosensor is not
limited to ZGNRs and it could be realized with other nanowires supporting
transverse edge currents, such as chiral GNRs or wires made of two-dimensional
topological insulators.Comment: 6 pages, 6 figures, PDFLaTe
Trans-active factors controlling the IL-2 gene in adult human T-cell subsets
IL-2 secretion in total or subsets of PHA/PMA-stimulated PBMC-derived human T-lymphocytes was monitored and found to be largely due to CD4+CD8− cells. The presence and functional state of transcription factors (TF) was assessed by protein-DNA interaction assays and functional transactivation experiments in the Xenopts oocyte system, modulating IL-2 transcription by injection of proteins. The results reveal that CD4+CD8− cells contain both, functional silencer in their resting, and positive TF in their activated states while the CD4+CD8− group contains only non-functional positive TF. This demonstrates that the on/off switch of IL-2 transcription is based on the same mechanism in primary T-lymphocytes of mouse spleen and in peripheral human CD4+CD8− cells
Ultrafast Non-local Spin Dynamics in Metallic Bi-Layers by Linear and Non-linear Magneto-Optics
We make a step towards the understanding of spin dynamics induced by spin-polarized hot carriers in metals. Exciting the Fe layer of Au/Fe/MgO(001) structures with femtosecond laser pulses, we demonstrate the ultrafast spin transport from Fe into Au using time-resolved MOKE and mSHG for depth-sensitive detection of the transient magnetization
Conductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependence
Charge transport through a molecular junction comprising an oligomer of p-phenylene-vinylene between gold contacts has been investigated using density-functional theory and the nonequilibrium Green's function method. The influence of the contact gap geometry on the transport has been studied for elongated and contracted gaps, as well as various molecular conformations. The calculated current-voltage characteristics show an unusual increase in the low bias conductance with the contact separation. In contrast, for compressed junctions the conductance displays only a very weak dependence on both the separation and related molecular conformation. However, if the contraction of the gap between the electrodes is accommodated by tilting the molecule, the conductance will increase with the tilting angle, in line with experimental observations. It is demonstrated that the effect of tilting on transport can be interpreted in a similar way to the case of the stretching the junction with a molecule in an upright position. The lowest conductance was observed for the equilibrium gap geometry. With the dominant transport contribution arising from the π system of the frontier junction orbitals, all the predicted increases in the conductance arise simply from the better band alignment between relevant frontier orbitals at the nonequilibrium geometries at the expense of weaker coupling with the contacts
- …
