37 research outputs found
Is the health status of female victims poorer than males in the post-disaster reconstruction in China: a comparative study of data on male victims in the first survey and double tracking survey data
The Application of Blended Learning in Training Primary School English Teachers in Xi'an
Complex dynamics of hair bundle of auditory nervous system (II): forced oscillations related to two cases of steady state
Emission Trade-Off between Isoprene and Other BVOC Components in Pinus massoniana Saplings May Be Regulated by Content of Chlorophylls, Starch and NSCs under Drought Stress
The aim of this work was to study the changes in the BVOCs emission rates and physiological mechanistic response of Pinus massoniana saplings in response to drought stress. Drought stress significantly reduced the emission rates of total BVOCs, monoterpenes, and sesquiterpenes, but had no significant effect on the emission rate of isoprene, which slightly increased under drought stress. A significant negative relationship was observed between the emission rates of total BVOCs, monoterpenes, and sesquiterpenes and the content of chlorophylls, starch, and NSCs, and a positive relationship was observed between the isoprene emission rate and the content of chlorophylls, starch, and NSCs, indicating different control mechanism over the emission of the different components of BVOCs. Under drought stress, the emission trade-off between isoprene and other BVOCs components may be driven by the content of chlorophylls, starch, and NSCs. Considering the inconsistent responses of the different components of BVOCs to drought stress for different plant species, close attention should be paid to the effect of drought stress and global change on plant BVOCs emissions in the future
Responses of Water Use Strategies to Seasonal Drought Stress Differed Among Eucalyptus urophylla S.T.Blake × E. grandis Plantations Along with Stand Ages
Water use strategies reflect the ability of plants to adapt to drought caused by climate change. However, how these strategies change with stand development and seasonal drought is not fully understood. This study used stable isotope techniques (δD, δ18O, and δ13C) combined with the MixSIAR model to quantify the seasonal changes in water use sources and water use efficiency (WUE) of Eucalyptus urophylla S.T.Blake × E. grandis (E. urophylla × E. grandis) at four stand ages (2-, 4-, 9- and 14-year-old) and to identify their influencing factors. Our results showed that the young (2-year-old) and middle-aged (4-year-old) stands primarily relied on shallow soil water throughout the growing season due to the limitations of a shallow root system. In contrast, the mature (9-year-old) and overmature (14-year-old) stands, influenced by the synergistic effects of larger and deeper root systems and relative extractable water (REW), exhibited more flexibility in water use, mainly relying on shallow soil water in wet months, but shifting to using middle and deep soil layer water in dry months, and quickly returning to mainly using shallow soil water in the episodic wet month of the dry season. The WUE of E. urophylla × E. grandis was affected by the combined effect of air temperature (T), vapor pressure deficit (VPD), and REW. WUE was consistent across the stand ages in the wet season but decreased significantly with stand age in the dry season. This suggests that mature and overmature stands depend more on shifting their water source, while young and middle-aged stands rely more on enhanced WUE to cope with seasonal drought stress, resulting in young and middle-aged stands being more vulnerable to drought stress. These findings offer valuable insights for managing water resources in eucalyptus plantations, particularly as drought frequency and intensity continue to rise
Hexabromocyclododecanes (HBCDs) in fish: Evidence of recent HBCD input into the coastal environment
Hexabromocyclododecanes (HBCDs) are flame retardants and emerging persistent organic pollutants. In the present study, alpha-, beta-, and gamma-HBCDs were measured in several fish species from rivers and an electronic waste (e-waste) recycling site in Pearl River Delta, South China. The concentrations of HBCDs were 12.8 to 640, 5.90 to 115, and 34.3 to 518 ng/g lipid weight (1w) in mud carp (Cirrhinus molitorella), tilapia (Tilapia nilotica), and plecostomus (Hypostomus plecostomus), respectively. Plecostomus showed the highest HBCD concentrations among three fish species. The contributions of alpha-HBCD to total HBCDs were 78% to 97%, 93% to 99%, and 87% to 98% in carp, tilapia, and plecostomus, respectively. Fish samples from a harbor and the e-waste site exhibited the highest HBCD concentrations among all samples. The HBCD concentrations were not significantly correlated with the gross domestic product or population data. e-Waste recycling activities, harbor construction, and shipment might be recent HBCD sources
