25 research outputs found
Microglial activation in Parkinson’s disease using [18F]-FEPPA
BACKGROUND: Neuroinflammatory processes including activated microglia have been reported to play an important role in Parkinson’s disease (PD). Increased expression of translocator protein (TSPO) has been observed after brain injury and inflammation in neurodegenerative diseases. Positron emission tomography (PET) radioligand targeting TSPO allows for the quantification of neuroinflammation in vivo. METHODS: Based on the genotype of the rs6791 polymorphism in the TSPO gene, we included 25 mixed-affinity binders (MABs) (14 PD patients and 11 age-matched healthy controls (HC)) and 27 high-affinity binders (HABs) (16 PD patients and 11 age-matched HC) to assess regional differences in the second-generation radioligand [(18)F]-FEPPA between PD patients and HC. FEPPA total distribution volume (V (T)) values in cortical as well as subcortical brain regions were derived from a two-tissue compartment model with arterial plasma as an input function. RESULTS: Our results revealed a significant main effect of genotype on [(18)F]-FEPPA V (T) in every brain region, but no main effect of disease or disease × genotype interaction in any brain region. The overall percentage difference of the mean FEPPA V (T) between HC-MABs and HC-HABs was 32.6% (SD = 2.09) and for PD-MABs and PD-HABs was 43.1% (SD = 1.21). CONCLUSIONS: Future investigations are needed to determine the significance of [(18)F]-FEPPA as a biomarker of neuroinflammation as well as the importance of the rs6971 polymorphism and its clinical consequence in PD
A systematic review of the effects of low-frequency repetitive transcranial magnetic stimulation on cognition
Imaging Striatal Microglial Activation in Patients with Parkinson’s Disease
This study investigated whether the second-generation translocator protein 18kDa (TSPO) radioligand, [18F]-FEPPA, could be used in neurodegenerative parkinsonian disorders as a biomarker for detecting neuroinflammation in the striatum. Neuroinflammation has been implicated as a potential mechanism for the progression of Parkinson's disease (PD). Positron Emission Tomography (PET) radioligand targeting for TSPO allows for the quantification of neuroinflammation in vivo. Based on genotype of the rs6791 polymorphism in the TSPO gene, 16 mixed-affinity binders (MABs) (8 PD and age-matched 8 healthy controls (HCs)), 16 high-affinity binders (HABs) (8 PD and age-matched 8 HCs) and 4 low-affinity binders (LABs) (3 PD and 1 HCs) were identified. Total distribution volume (VT) values in the striatum were derived from a two-tissue compartment model with arterial plasma as an input function. There was a significant main effect of genotype on [18F]-FEPPA VT values in the caudate nucleus (p = 0.001) and putamen (p < 0.001), but no main effect of disease or disease x genotype interaction in either ROI. In the HAB group, the percentage difference between PD and HC was 16% in both caudate nucleus and putamen; in the MAB group, it was -8% and 3%, respectively. While this PET study showed no evidence of increased striatal TSPO expression in PD patients, the current findings provide some insights on the possible interactions between rs6791 polymorphism and neuroinflammation in PD
Voxel level quantification of [11C]CURB, a radioligand for Fatty Acid Amide Hydrolase, using high resolution positron emission tomography
Magnetic Resonance Imaging-Guided, Open-Label, High-Frequency Repetitive Transcranial Magnetic Stimulation for Adolescents with Major Depressive Disorder
The Interaction Between Neuroinflammation and β-Amyloid in Cognitive Decline in Parkinson’s Disease
Feasibility study of TSPO quantification with [18F]FEPPA using population-based input function
Restoring Motor Functions After Stroke: Multiple Approaches and Opportunities
International audienceMore than 1.5 million people suffer a stroke in Europe per year and more than 70% of stroke survivors experience limited functional recovery of their upper limb, resulting in diminished quality of life. Therefore, interventions to address upper-limb impairment are a priority for stroke survivors and clinicians. While a significant body of evidence supports the use of conventional treatments, such as intensive motor training or constraint-induced movement therapy, the limited and heterogeneous improvements they allow are, for most patients, usually not sufficient to return to full autonomy. Various innovative neurorehabilitation strategies are emerging in order to enhance beneficial plasticity and improve motor recovery. Among them, robotic technologies, brain-computer interfaces, or noninvasive brain stimulation (NIBS) are showing encouraging results. These innovative interventions, such as NIBS, will only provide maximized effects, if the field moves away from the “one-fits all” approach toward a “patient-tailored” approach. After summarizing the most commonly used rehabilitation approaches, we will focus on NIBS and highlight the factors that limit its widespread use in clinical settings. Subsequently, we will propose potential biomarkers that might help to stratify stroke patients in order to identify the individualized optimal therapy. We will discuss future methodological developments, which could open new avenues for poststroke rehabilitation, toward more patient-tailored precision medicine approaches and pathophysiologically motivated strategies
Interaction between TSPO—a neuroimmune marker—and redox status in clinical high risk for psychosis: a PET–MRS study
First Human Evidence of d-Amphetamine Induced Displacement of a D2/3 Agonist Radioligand: A [11C]-(+)-PHNO Positron Emission Tomography Study
Imaging the competition between D(2/3) radioligands and endogenous dopamine is so far the only way to measure dopamine release in the living human brain. The dopamine D(2) receptor exists in a high (D(2)(high)) and a low-affinity state for dopamine. Under physiological conditions, dopamine is expected to bind to D(2)(high) only. [(11)C]-(+)-4-propyl-9-hydroxynaphthoxazine ((+)-PHNO) is the first D(2/3) agonist radioligand for positron emission tomography (PET) imaging in humans. Since [(11)C]-(+)-PHNO is expected to bind preferentially to D(2)(high), it should be particularly vulnerable to competition with endogenous dopamine. Nine healthy subjects participated in two PET scans, one after administration of d-amphetamine and one after placebo. [(11)C]-(+)-PHNO PET test re-test variability was determined in 11 healthy subjects. Binding potentials (BPs) were calculated for caudate, putamen, ventral striatum, and globus pallidus. d-Amphetamine led to a significant decrease of [(11)C]-(+)-PHNO BPs in caudate (-13.2%), putamen (-20.8%), and ventral striatum (-24.9%), but not in globus pallidus (-6.5%). d-Amphetamine-induced displacement correlated with serum d-amphetamine levels in all regions but caudate. This is the first report on competition between endogenous dopamine and a D(2/3) agonist radioligand in humans. [(11)C]-(+)-PHNO PET might be a superior measure for release of endogenous dopamine than PET employing conventional D(2/3) antagonist radioligands
