12,512 research outputs found
Equivalence Study of a Dental Anatomy Computer-Assisted Learning Program
Tooth Morphology is a computer-assisted learning program designed to teach the anatomy of the adult dentition. The purpose of this study was to test whether Tooth Morphology could teach dental anatomy to first-year dental students as well as the traditional lecture. A randomized controlled trial was performed with forty-five first-year dental students. The students were randomly assigned to either the Tooth Morphology group (n=23), which used the computer-assisted learning program and did not attend lecture, or the lecture group (n=22), which attended the traditional lecture and did not useTooth Morphology. The Tooth Morphology group had a final exam average of 90.0 (standard deviation=5.2), and the lecture group had a final exam average of 90.9 (sd=5.3). Analysis showed that the two groups’ scores were statistically equivalent (p\u3c0.05), with a priori equivalence bounds around the difference between the groups set at +/−5 points. It was concluded that Tooth Morphology taught the anatomy of the adult dentition as well as traditional lecture, as measured by exams. Based on the results of this study and student feedback, Tooth Morphology, in combination with interactive class meetings, has replaced the traditional dental anatomy lectures
Fine particulate matter pollution and risk of community-acquired sepsis
While air pollution has been associated with health complications, its effect on sepsis risk is unknown. We examined the association between fine particulate matter (PM2.5) air pollution and risk of sepsis hospitalization. We analyzed data from the 30,239 community-dwelling adults in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort linked with satellite-derived measures of PM2.5 data. We defined sepsis as a hospital admission for a serious infection with ≥2 systemic inflammatory response (SIRS) criteria. We performed incidence density sampling to match sepsis cases with 4 controls by age (±5 years), sex, and race. For each matched group we calculated mean daily PM2.5 exposures for short-term (30-day) and long-term (one-year) periods preceding the sepsis event. We used conditional logistic regression to evaluate the association between PM2.5 exposure and sepsis, adjusting for education, income, region, temperature, urbanicity, tobacco and alcohol use, and medical conditions. We matched 1386 sepsis cases with 5544 non-sepsis controls. Mean 30-day PM2.5 exposure levels (Cases 12.44 vs. Controls 12.34 µg/m3; p = 0.28) and mean one-year PM2.5 exposure levels (Cases 12.53 vs. Controls 12.50 µg/m3; p = 0.66) were similar between cases and controls. In adjusted models, there were no associations between 30-day PM2.5 exposure levels and sepsis (4th vs. 1st quartiles OR: 1.06, 95% CI: 0.85–1.32). Similarly, there were no associations between one-year PM2.5 exposure levels and sepsis risk (4th vs. 1st quartiles OR: 0.96, 95% CI: 0.78–1.18). In the REGARDS cohort, PM2.5 air pollution exposure was not associated with risk of sepsis
The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes
We study the never-worse relation (NWR) for Markov decision processes with an
infinite-horizon reachability objective. A state q is never worse than a state
p if the maximal probability of reaching the target set of states from p is at
most the same value from q, regard- less of the probabilities labelling the
transitions. Extremal-probability states, end components, and essential states
are all special cases of the equivalence relation induced by the NWR. Using the
NWR, states in the same equivalence class can be collapsed. Then, actions
leading to sub- optimal states can be removed. We show the natural decision
problem associated to computing the NWR is coNP-complete. Finally, we ex- tend
a previously known incomplete polynomial-time iterative algorithm to
under-approximate the NWR
Advancing In Situ Modeling of ICMEs: New Techniques for New Observations
It is generally known that multi-spacecraft observations of interplanetary
coronal mass ejections (ICMEs) more clearly reveal their three-dimensional
structure than do observations made by a single spacecraft. The launch of the
STEREO twin observatories in October 2006 has greatly increased the number of
multipoint studies of ICMEs in the literature, but this field is still in its
infancy. To date, most studies continue to use on flux rope models that rely on
single track observations through a vast, multi-faceted structure, which
oversimplifies the problem and often hinders interpretation of the large-scale
geometry, especially for cases in which one spacecraft observes a flux rope,
while another does not. In order to tackle these complex problems, new modeling
techniques are required. We describe these new techniques and analyze two ICMEs
observed at the twin STEREO spacecraft on 22-23 May 2007, when the spacecraft
were separated by ~8 degrees. We find a combination of non-force-free flux rope
multi-spacecraft modeling, together with a new non-flux rope ICME plasma flow
deflection model, better constrains the large-scale structure of these ICMEs.
We also introduce a new spatial mapping technique that allows us to put
multispacecraft observations and the new ICME model results in context with the
convecting solar wind. What is distinctly different about this analysis is that
it reveals aspects of ICME geometry and dynamics in a far more visually
intuitive way than previously accomplished. In the case of the 22-23 May ICMEs,
the analysis facilitates a more physical understanding of ICME large-scale
structure, the location and geometry of flux rope sub-structures within these
ICMEs, and their dynamic interaction with the ambient solar wind
NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo.
NLRs (nucleotide-binding domain [NBD] leucine-rich repeat [LRR]-containing proteins) exhibit diverse functions in innate and adaptive immunity. NAIPs (NLR family, apoptosis inhibitory proteins) are NLRs that appear to function as cytosolic immunoreceptors for specific bacterial proteins, including flagellin and the inner rod and needle proteins of bacterial type III secretion systems (T3SSs). Despite strong biochemical evidence implicating NAIPs in specific detection of bacterial ligands, genetic evidence has been lacking. Here we report the use of CRISPR/Cas9 to generate Naip1(-/-) and Naip2(-/-) mice, as well as Naip1-6(Δ/Δ) mice lacking all functional Naip genes. By challenging Naip1(-/-) or Naip2(-/-) mice with specific bacterial ligands in vivo, we demonstrate that Naip1 is uniquely required to detect T3SS needle protein and Naip2 is uniquely required to detect T3SS inner rod protein, but neither Naip1 nor Naip2 is required for detection of flagellin. Previously generated Naip5(-/-) mice retain some residual responsiveness to flagellin in vivo, whereas Naip1-6(Δ/Δ) mice fail to respond to cytosolic flagellin, consistent with previous biochemical data implicating NAIP6 in flagellin detection. Our results provide genetic evidence that specific NAIP proteins function to detect specific bacterial proteins in vivo
Mary's Powers of Imagination
One common response to the knowledge argument is the ability hypothesis. Proponents of the ability hypothesis accept that Mary learns what seeing red is like when she exits her black-and-white room, but they deny that the kind of knowledge she gains is propositional in nature. Rather, she acquires a cluster of abilities that she previously lacked, in particular, the abilities to recognize, remember, and imagine the color red. For proponents of the ability hypothesis, knowing what an experience is like simply consists in the possession of these abilities.
Criticisms of the ability hypothesis tend to focus on this last claim. Such critics tend to accept that Mary gains these abilities when she leaves the room, but they deny that such abilities constitute knowledge of what an experience is like. To my mind, however, this critical strategy grants too much. Focusing specifically on imaginative ability, I argue that Mary does not gain this ability when she leaves the room for she already had the ability to imagine red while she was inside it. Moreover, despite what some have thought, the ability hypothesis cannot be easily rescued by recasting it in terms of a more restrictive imaginative ability. My purpose here is not to take sides in the debate about physicalism, i.e., my criticism of the ability hypothesis is not offered in an attempt to defend the anti-physicalist conclusion of the knowledge argument. Rather, my purpose is to redeem the imagination from the misleading picture of it that discussion of the knowledge argument has fostered
Micro-fading spectrometry: investigating the wavelength specificity of fading
A modified microfading spectrometer incorporating a linear variable filter is used to investigate the wavelength dependence of fading of traditional watercolour pigments, dosimeters and fading standards at a higher spectral resolution and/or sampling than had previously been attempted. While the wavelength dependence of photochemical damage was largely found to correlate well with the absorption spectra of each material, exceptions were found in the case of Prussian blue and Prussian green pigments (the latter includes Prussian blue), for which an anti-correlation between the spectral colour change and the absorption spectrum was found
Mapping adaptation of barley to droughted environments
Identifying barley genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and the development of more drought tolerant cultivars. We assembled a population of 192 genotypes that represented landraces, old, and contemporary cultivars sampling key regions around the Mediterranean basin and the rest of Europe. The population was genotyped with a stratified set of 50 genomic and EST derived molecular markers, 49 of which were Simple Sequence Repeats (SSRs), which revealed an underlying population sub-structure that corresponded closely to the geographic regions in which the genotypes were grown. A more dense whole genome scan was generated by using Diversity Array Technology (DArT®) to generate 1130 biallelic markers for the population. The population was grown at two contrasting sites in each of seven Mediterranean countries for harvest 2004 and 2005 and grain yield data collected. Mean yield levels ranged from 0.3 to 6.2 t/ha, with highly significant genetic variation in low-yielding environments. Associations of yield with barley genomic regions were then detected by combining the DArT marker data with the yield data in mixed model analyses for the individual trials, followed by multiple regression of yield on markers to identify a multi-locus subset of significant markers/QTLs. QTLs exhibiting a pre-defined consistency across environments were detected in bins 4, 6, 6 and 7 on barley chromosomes 3H, 4H, 5H and 7H respectivel
Grounding, Analysis, and Russellian Monism
Few these days dispute that the knowledge argument demonstrates an epistemic gap between the physical facts and the facts about experience. It is much more contentious whether that epistemic gap can be used to demonstrate a metaphysical gap of a kind that is inconsistent with physicalism. In this paper I will explore two attempts to block the inference from an epistemic gap to a metaphysical gap – the first from the phenomenal concept strategy, the second from Russellian monism – and suggest how the proponent of the knowledge argument might respond to each of these challenges. In doing so, I will draw on recent discussions of grounding and essence in the metaphysics literature
Main Body Aerodynamics
Our senior design project entails designing, analyzing the front upper aerodynamic nose for the Formula SAE at VCU’s race team. Currently there are no provisions on the chassis to provide relief for parasitic loss of speed & efficiency due to drag. Since Formula SAE is focused on building a engineered, safe, and efficient vehicle our aerodynamic design will help with handling, downforce, and fuel economy all while reducing drag. Our Aerodynamic design will play a key role not only in how the Formula car is perceived aesthetically, but our calculations will be a large determining factor in the cars overall final performance.
Our group started the project by initially consulting texts to better grasp knowledge on aerodynamic systems and their role in contributing to an efficient vehicle. With our research we were able to come up with numerous design considerations and gained more insight into how aerodynamics systems are analyzed. Once we conducted our background research we made some rough sketches of what we wanted the aero to look like. With these 2-D drawings we gathered equations necessary to calculate the drag coefficient and conducted a theoretical analysis of our 2D version to compare to our 3D calculations that will be solved using ANSYS. Our research showed us that the tear drop is generally thought to be the best shape so we based our drawings off of that consideration. Once we had a rough sketch, we started modeling the aero using an existing drawing of the chassis in Solidworks. At this stage we created a few different types of models so that in the future we would be able to quickly differentiate the aspects of our drawings that reduced the coefficient of drag.
Moving forward with the project we expect to encounter many other problems associated with our design and analysis. However our aim is to narrow down our 3D designs and consider the aspects that reduced drag. This will allow us to come up with a further refined result. Once our data is analyzed we can conduct a comparison of our initial designs versus our final product and gain understanding as to what is needed to quickly and efficiently design aero in the future. This project will entail engineering through hand calculations, designing for real world problems using surface models in solidworks, and performing an analysis using the finite element method & computational fluid dynamics.https://scholarscompass.vcu.edu/capstone/1066/thumbnail.jp
- …
