40,782 research outputs found
Thermodielectric radiometer
Radiometer measures microsecond pulses of radiant flux in the presence of electromagnetic noise. It consists of a charged capacitor that delivers a voltage pulse proportional to the thermally induced depolarization of its polymeric dielectric
System controls challenges of hypersonic combined-cycle engine powered vehicles
Hypersonic aircraft with air-breathing engines have been described as the most complex and challenging air/space vehicle designs ever attempted. This is particularly true for aircraft designed to accelerate to orbital velocities. The propulsion system for the National Aerospace Plane will be an active factor in maintaining the aircraft on course. Typically addressed are the difficulties with the aerodynamic vehicle design and development, materials limitations and propulsion performance. The propulsion control system requires equal materials limitations and propulsion performance. The propulsion control system requires equal concern. Far more important than merely a subset of propulsion performance, the propulsion control system resides at the crossroads of trajectory optimization, engine static performance, and vehicle-engine configuration optimization. To date, solutions at these crossroads are multidisciplinary and generally lag behind the broader performance issues. Just how daunting these demands will be is suggested. A somewhat simplified treatment of the behavioral characteristics of hypersonic aircraft and the issues associated with their air-breathing propulsion control system design are presented
Method of measuring thermal conductivity of high performance insulation
Method accurately measures the thermal conductivity of high-performance sheet insulation as a discrete function of temperature. It permits measurements to be made at temperature drops of approximately 10 degrees F across the insulation and ensures measurement accuracy by minimizing longitudinal heat losses in the system
A Mathematical Model for Estimating Biological Damage Caused by Radiation
We propose a mathematical model for estimating biological damage caused by
low-dose irradiation. We understand that the Linear Non Threshold (LNT)
hypothesis is realized only in the case of no recovery effects. In order to
treat the realistic living objects, our model takes into account various types
of recovery as well as proliferation mechanism, which may change the resultant
damage, especially for the case of lower dose rate irradiation. It turns out
that the lower the radiation dose rate, the safer the irradiated system of
living object (which is called symbolically "tissue" hereafter) can have
chances to survive, which can reproduce the so-called dose and dose-rate
effectiveness factor (DDREF).Comment: 22 pages, 6 Figs, accepted in Journal of the Physical Society of
Japa
PROMIS series. Volume 8: Midlatitude ground magnetograms
This is the eighth in a series of volumes pertaining to the Polar Region Outer Magnetosphere International Study (PROMIS). This volume contains 24 hour stack plots of 1-minute average, H and D component, ground magnetograms for the period March 10 through June 16, 1986. Nine midlatitude ground stations were selected from the UCLA magnetogram data base that was constructed from all available digitized magnetogram stations. The primary purpose of this publication is to allow users to define universal times and onset longitudes of magnetospheric substorms
State Case Studies of Infant and Early Childhood Mental Health Systems: Strategies for Change
Profiles efforts to develop mental health identification and intervention systems for children up to age 5 in Colorado, Indiana, Massachusetts, and Rhode Island. Examines hurdles, reform potentials, and lessons learned, including the role of partnerships
Polarization-Tailored Raman Frequency Conversion in Chiral Gas-Filled Hollow Core Photonic Crystal Fibers
Broadband-tunable sources of circularly-polarized light are crucial in fields
such as laser science, biomedicine and spectroscopy. Conventional sources rely
on nonlinear wavelength conversion and polarization control using standard
optical components, and are limited by the availability of suitably transparent
crystals and glasses. Although gas-filled hollow-core photonic crystal fiber
provides pressure-tunable dispersion, long well-controlled optical
path-lengths, and high Raman conversion efficiency, it is unable to preserve
circular polarization state, typically exhibiting weak linear birefringence.
Here we report a revolutionary approach based on helically-twisted hollow-core
photonic crystal fiber, which displays circular birefringence, thus robustly
maintaining circular polarization state against external perturbations. This
makes it possible to generate pure circularly-polarized Stokes and anti-Stokes
signals by rotational Raman scattering in hydrogen. The polarization state of
the frequency-shifted Raman bands can be continuously varied by tuning the gas
pressure in the vicinity of the gain suppression point. The results pave the
way to a new generation of compact and efficient fiber-based sources of
broadband light with fully-controllable polarization state.Comment: 5 pages, 4 figure
A case study using ECHO(Extraction and Classification of Homogeneous Objects) for analysis of multispectral scanner data
There are no author-identified significant results in this report
- …
