2,258 research outputs found
"Boring formal methods" or "Sherlock Holmes deduction methods"?
This paper provides an overview of common challenges in teaching of logic and
formal methods to Computer Science and IT students. We discuss our experiences
from the course IN3050: Applied Logic in Engineering, introduced as a "logic
for everybody" elective course at at TU Munich, Germany, to engage pupils
studying Computer Science, IT and engineering subjects on Bachelor and Master
levels. Our goal was to overcome the bias that logic and formal methods are not
only very complicated but also very boring to study and to apply. In this
paper, we present the core structure of the course, provide examples of
exercises and evaluate the course based on the students' surveys.Comment: Preprint. Accepted to the Software Technologies: Applications and
Foundations (STAF 2016). Final version published by Springer International
Publishing AG. arXiv admin note: substantial text overlap with
arXiv:1602.0517
Mutual information between geomagnetic indices and the solar wind as seen by WIND : implications for propagation time estimates
The determination of delay times of solar wind conditions at the sunward libration point to effects on Earth is investigated using mutual information. This measures the amount of information shared between two timeseries. We consider the mutual information content of solar wind observations, from WIND, and the geomagnetic indices. The success of five commonly used schemes for estimating interplanetary propagation times is examined. Propagation assuming a fixed plane normal at 45 degrees to the GSE x-axis (i.e. the Parker Spiral estimate) is found to give optimal mutual information. The mutual information depends on the point in space chosen as the target for the propagation estimate, and we find that it is maximized by choosing a point in the nightside rather than dayside magnetosphere. In addition, we employ recurrence plot analysis to visualize contributions to the mutual information, this suggests that it appears on timescales of hours rather than minutes
The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000
To measure the floor in interplanetary magnetic field and estimate the time-
invariant open magnetic flux of Sun, it is necessary to know a part of magnetic
field of Sun carried away by CMEs. In contrast with previous papers, we did not
use global solar parameters: we identified different large-scale types of solar
wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs)
and calculated magnitude of interplanetary magnetic field B averaged over 2
Carrington rotations. The floor of magnetic field is estimated as B value at
solar cycle minimum when the ICMEs were not observed and it was calculated to
be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous
results.Comment: 10 pages, 2 figures, submitted in GR
Photometry of cometary nuclei: Rotation rates, colours and a comparison with Kuiper Belt Objects
We present time-series data on Jupiter Family Comets (JFCs) 17P/Holmes,
47P/Ashbrook-Jackson and 137P/Shoemaker-Levy 2. In addition we also present
results from `snap-shot' observations of comets 43P/Wolf-Harrington,
44P/Reinmuth 2, 103P/Hartley 2 and 104P/Kowal 2 taken during the same run. The
comets were at heliocentric distances of between 3 and 7 AU at this time. We
present measurements of size and activity levels for the snap-shot targets. The
time-series data allow us to constrain rotation periods and shapes, and thus
bulk densities. We also measure colour indices (V-R) and (R-I) and reliable
radii for these comets. We compare all of our findings to date with similar
results for other comets and Kuiper Belt Objects (KBOs). We find that the
rotational properties of nuclei and KBOs are very similar, that there is
evidence for a cut-off in bulk densities at ~ 0.6 g cm^{-3} in both
populations, and the colours of the two populations show similar correlations.
For JFCs there is no observational evidence for the optical colours being
dependant on either position in the orbit or on orbital parameters.Comment: 15 pages, 19 figures, accepted for publication in MNRA
A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum
We present an overview of four phase-constrained Chandra HETGS X-ray
observations of Delta Ori A. Delta Ori A is actually a triple system which
includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the
only such object which can be observed with little phase-smearing with the
Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray
luminosity than the brighter primary, Delta Ori A provides a unique system with
which to test the spatial distribution of the X-ray emitting gas around Delta
Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray
dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for
the combined observation, having an exposure time of nearly 500 ksec and
covering nearly the entire binary orbit. Companion papers discuss the X-ray
variability seen in the Chandra spectra, present new space-based photometry and
ground-based radial velocities simultaneous with the X-ray data to better
constrain the system parameters, and model the effects of X-rays on the optical
and UV spectrum. We find that the X-ray emission is dominated by embedded wind
shock emission from star Aa1, with little contribution from the tertiary star
Ab or the shocked gas produced by the collision of the wind of Aa1 against the
surface of Aa2. We find a similar temperature distribution to previous X-ray
spectrum analyses. We also show that the line half-widths are about
the terminal velocity of the wind of star Aa1. We find a strong
anti-correlation between line widths and the line excitation energy, which
suggests that longer-wavelength, lower-temperature lines form farther out in
the wind. Our analysis also indicates that the ratio of the intensities of the
strong and weak lines of \ion{Fe}{17} and \ion{Ne}{10} are inconsistent with
model predictions, which may be an effect of resonance scatteringComment: accepted by ApJ; revised according to ApJ proo
Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms
We investigate relative role of various types of solar wind streams in
generation of magnetic storms. On the basis of the OMNI data of interplanetary
measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with
Dst < -50 nT and their interplanetary sources: corotating interaction regions
(CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and
compression regions Sheath before both types of ICME. For various types of
solar wind we study following relative characteristics: occurrence rate; mass,
momentum, energy and magnetic fluxes; probability of generation of magnetic
storm (geoeffectiveness) and efficiency of process of this generation. Obtained
results show that despite magnetic clouds have lower occurrence rate and lower
efficiency than CIR and Sheath they play an essential role in generation of
magnetic storms due to higher geoeffectiveness of storm generation (i.e higher
probability to contain large and long-term southward IMF Bz component).Comment: 23 pages, 4 figures, 3 tables, submitted to JGR special issue
"Response of Geospace to High-Speed Streams
Three deaf mice: mouse models for TECTA-based human hereditary deafness reveal domain-specific structural phenotypes in the tectorial membrane
Tecta is a modular, non-collagenous protein of the tectorial membrane, an extracellular matrix of the cochlea essential for normal hearing. Missense mutations in Tecta cause dominant forms of nonsyndromic deafness and a genotype-phenotype correlation has been reported in humans, with mutations in different Tecta domains causing mid- or high-frequency hearing impairments that are either stable or progressive. Three mutant mice were created as models for human Tecta mutations; the TectaL1820F, G1824D/+ mouse for zona pellucida (ZP) domain mutations causing stable mid-frequency hearing loss in a Belgian family, the TectaC1837G/+ mouse for a ZP-domain mutation underlying progressive mid-frequency hearing loss in a Spanish family, and the TectaC1619S/+ mouse for a zonadhesin-like (ZA) domain mutation responsible for progressive, high-frequency hearing loss in a French family. Mutations in the ZP and ZA domains generate distinctly different changes in the structure of the tectorial membrane. ABR thresholds in the 8-40 kHz range are elevated by 30-40 dB in the ZP-domain mutants, whilst those in the ZA-domain mutant are elevated by 20-30 dB. The phenotypes are stable and no evidence has been found for a progressive deterioration in tectorial membrane structure or auditory function. Despite elevated auditory thresholds, the Tecta mutant mice all exhibit an enhanced tendency to have audiogenic seizures in response to white noise stimuli at low sound pressure levels (≤84 dB SPL), revealing a previously unrecognised consequence of Tecta mutations. These results, together with those from previous studies, establish an allelic series for Tecta unequivocally demonstrating an association between genotype and phenotype
Neuromuscular Blockade with Rocuronium Bromide Increases the Tolerance of Acute Normovolemic Anemia in Anesthetized Pigs
Background: The patient's individual anemia tolerance is pivotal when blood transfusions become necessary, but are not feasible for some reason. To date, the effects of neuromuscular blockade (NMB) on anemia tolerance have not been investigated. Methods: 14 anesthetized and mechanically ventilated pigs were randomly assigned to the Roc group (3.78 mg/kg rocuronium bromide followed by continuous infusion of 1 mg/kg/min, n = 7) or to the Sal group (administration of the corresponding volume of normal saline, n = 7). Subsequently, acute normovolemic anemia was induced by simultaneous exchange of whole blood for a 6% hydroxyethyl starch solution (130/0.4) until a sudden decrease of total body O-2 consumption (VO2) indicated a critical limitation of O-2 transport capacity. The Hb concentration quantified at this time point (Hb(crit)) was the primary end-point of the protocol. Secondary endpoints were parameters of hemodynamics, O-2 transport and tissue oxygenation. Results: Hb(crit) was significantly lower in the Roc group (2.4 +/- 0.5 vs. 3.2 +/- 0.7 g/dl) reflecting increased anemia tolerance. NMB with rocuronium bromide reduced skeletal muscular VO2 and total body O-2 extraction rate. As the cardiac index increased simultaneously, total body VO2 only decreased marginally in the Roc group (change of VO2 relative to baseline -1.7 +/- 0.8 vs. 3.2 +/- 1.9% in the Sal group, p < 0.05). Conclusion: Deep NMB with rocuronium bromide increases the tolerance of acute normovolemic anemia. The underlying mechanism most likely involves a reduction of skeletal muscular VO2. During acellular treatment of an acute blood loss, NMB might play an adjuvant role in situations where profound stages of normovolemic anemia have to be tolerated (e.g. bridging an unexpected blood loss until blood products become available for transfusion). Copyright (C) 2011 S. Karger AG, Base
A Coordinated X-ray and Optical Campaign of the Nearby Massive Binary Orionis Aa: II. X-ray Variability
We present time-resolved and phase-resolved variability studies of an
extensive X-ray high-resolution spectral dataset of the Orionis Aa
binary system. The four observations, obtained with Chandra ACIS HETGS, have a
total exposure time of ~479 ks and provide nearly complete binary phase
coverage. Variability of the total X-ray flux in the range 5-25 is
confirmed, with maximum amplitude of about +/-15% within a single ~125 ks
observation. Periods of 4.76d and 2.04d are found in the total X-ray flux, as
well as an apparent overall increase in flux level throughout the 9-day
observational campaign. Using 40 ks contiguous spectra derived from the
original observations, we investigate variability of emission line parameters
and ratios. Several emission lines are shown to be variable, including S XV, Si
XIII, and Ne IX. For the first time, variations of the X-ray emission line
widths as a function of the binary phase are found in a binary system, with the
smallest widths at phase=0.0 when the secondary Orionis Aa2 is at
inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds,
we relate the emission line width variability to the presence of a wind cavity
created by a wind-wind collision, which is effectively void of embedded wind
shocks and is carved out of the X-ray-producing primary wind, thus producing
phase-locked X-ray variability.Comment: 36 pages, 14 Tables, 19 Figures, accepted by ApJ, one of 4 related
papers to be published togethe
- …
