4,880 research outputs found

    PROTECTING PROPERTY RIGHTS WITH STRICT SCRUTINY: AN ARGUMENT FOR THE SPECIFICALLY AND UNIQUELY ATTRIBUTABLE STANDARD

    Get PDF
    This article analyzes three levels of scrutiny states have applied to regulatory takings cases. These include \u27judicial deterrence , rational nexus , and specifically and uniquely attributable . The author argues that the first two standards are inefficient and concludes in favor of the specifically and uniquely attributable standard

    An Information-Theoretic Analysis of Thompson Sampling

    Full text link
    We provide an information-theoretic analysis of Thompson sampling that applies across a broad range of online optimization problems in which a decision-maker must learn from partial feedback. This analysis inherits the simplicity and elegance of information theory and leads to regret bounds that scale with the entropy of the optimal-action distribution. This strengthens preexisting results and yields new insight into how information improves performance

    The interplay of sedimentation and crystallization in hard-sphere suspensions

    Get PDF
    We study crystal nucleation under the influence of sedimentation in a model of colloidal hard spheres via Brownian Dynamics simulations. We introduce two external fields acting on the colloidal fluid: a uniform gravitational field (body force), and a surface field imposed by pinning a layer of equilibrium particles (rough wall). We show that crystal nucleation is suppressed in proximity of the wall due to the slowing down of the dynamics, and that the spatial range of this effect is governed by the static length scale of bond orientational order. For distances from the wall larger than this length scale, the nucleation rate is greatly enhanced by the process of sedimentation, since it leads to a higher volume fraction, or a higher degree of supercooling, near the bottom. The nucleation stage is similar to the homogeneous case, with nuclei being on average spherical and having crystalline planes randomly oriented in space. The growth stage is instead greatly affected by the symmetry breaking introduced by the gravitation field, with a slowing down of the attachment rate due to density gradients, which in turn cause nuclei to grow faster laterally. Our findings suggest that the increase of crystal nucleation in higher density regions might be the cause of the large discrepancy in the crystal nucleation rate of hard spheres between experiments and simulations, on noting that the gravitational effects in previous experiments are not negligible.Comment: 16 pages, 15 figures, 2 tables; Soft Matter (2013
    corecore