1,412 research outputs found
Matching the (DR4)-R-6 interaction at two-loops
The coefficient of the interaction in the low energy
expansion of the two-loop four-graviton amplitude in type II superstring theory
is known to be proportional to the integral of the Zhang-Kawazumi (ZK)
invariant over the moduli space of genus-two Riemann surfaces. We demonstrate
that the ZK invariant is an eigenfunction with eigenvalue 5 of the
Laplace-Beltrami operator in the interior of moduli space. Exploiting this
result, we evaluate the integral of the ZK invariant explicitly, finding
agreement with the value of the two-loop interaction predicted
on the basis of S-duality and supersymmetry. A review of the current
understanding of the interactions in type II superstring
theory compactified on a torus with and is
included.Comment: 40 pages, various typos and coefficients corrected in version
Higher derivative type II string effective actions, automorphic forms and E11
By dimensionally reducing the ten-dimensional higher derivative type IIA
string theory effective action we place constraints on the automorphic forms
that appear in the effective action in lower dimensions. We propose a number of
properties of such automorphic forms and consider the prospects that E11 can
play a role in the formulation of the higher derivative string theory effective
action.Comment: 34 page
Infrared divergences and harmonic anomalies in the two-loop superstring effective action
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are creditedArticle funded by SCOAP3.
This research is partially supported by STFC (Grant ST/L000415/1, String
theory, gauge theory & duality
Microscopic unitary description of tidal excitations in high-energy string-brane collisions
The eikonal operator was originally introduced to describe the effect of
tidal excitations on higher-genus elastic string amplitudes at high energy. In
this paper we provide a precise interpretation for this operator through the
explicit tree-level calculation of generic inelastic transitions between closed
strings as they scatter off a stack of parallel Dp-branes. We perform this
analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in
the covariant formalism, using the Reggeon vertex operator. We also present a
detailed discussion of the high energy behaviour of the covariant string
amplitudes, showing how to take into account the energy factors that enhance
the contribution of the longitudinally polarized massive states in a simple
way.Comment: 58 page
Global entrainment of transcriptional systems to periodic inputs
This paper addresses the problem of giving conditions for transcriptional
systems to be globally entrained to external periodic inputs. By using
contraction theory, a powerful tool from dynamical systems theory, it is shown
that certain systems driven by external periodic signals have the property that
all solutions converge to a fixed limit cycle. General results are proved, and
the properties are verified in the specific case of some models of
transcriptional systems. The basic mathematical results needed from contraction
theory are proved in the paper, making it self-contained
Static Charges in the Low-Energy Theory of the S-Duality Twist
We continue the study of the low-energy limit of N=4 super Yang-Mills theory
compactified on a circle with S-duality and R-symmetry twists that preserve N=6
supersymmetry in 2+1D. We introduce external static supersymmetric quark and
anti-quark sources into the theory and calculate the Witten Index of the
resulting Hilbert space of ground states on a torus. Using these results we
compute the action of simple Wilson loops on the Hilbert space of ground states
without sources. In some cases we find disagreement between our results for the
Wilson loop eigenvalues and previous conjectures about a connection with
Chern-Simons theory.Comment: 73 pages, two paragraphs added, one to the introduction and one to
the discussio
D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades
We perform a systematic analysis of the D-brane charges associated with
string theory realizations of d=3 gauge theories, focusing on the examples of
the N=4 supersymmetric U(N)xU(N+M) Yang-Mills theory and the N=3 supersymmetric
U(N)xU(N+M) Yang-Mills-Chern-Simons theory. We use both the brane construction
of these theories and their dual string theory backgrounds in the supergravity
approximation. In the N=4 case we generalize the previously known gravitational
duals to arbitrary values of the gauge couplings, and present a precise mapping
between the gravity and field theory parameters. In the N=3 case, which (for
some values of N and M) flows to an N=6 supersymmetric Chern-Simons-matter
theory in the IR, we argue that the careful analysis of the charges leads to a
shift in the value of the B-field in the IR solution by 1/2, in units where its
periodicity is one, compared to previous claims. We also suggest that the N=3
theories may exhibit, for some values of N and M, duality cascades similar to
those of the Klebanov-Strassler theory.Comment: 47 pages, 9 figures; minor changes, references adde
Two-loop Yang-Mills diagrams from superstring amplitudes
Starting from the superstring amplitude describing interactions among
D-branes with a constant world-volume field strength, we present a detailed
analysis of how the open string degeneration limits reproduce the corresponding
field theory Feynman diagrams. A key ingredient in the string construction is
represented by the twisted (Prym) super differentials, as their periods encode
the information about the background field. We provide an efficient method to
calculate perturbatively the determinant of the twisted period matrix in terms
of sets of super-moduli appropriate to the degeneration limits. Using this
result we show that there is a precise one-to-one correspondence between the
degeneration of different factors in the superstring amplitudes and
one-particle irreducible Feynman diagrams capturing the gauge theory effective
action at the two-loop level.Comment: 42 pages plus appendices, 10 figure
Holographic three-point functions for short operators
We consider holographic three-point functions for operators dual to short
string states at strong coupling in N=4 super Yang-Mills. We treat the states
as point-like as they come in from the boundary but as strings in the
interaction region in the bulk. The interaction position is determined by
saddle point, which is equivalent to conservation of the canonical momentum for
the interacting particles, and leads to conservation of their conformal
charges. We further show that for large dimensions the rms size of the
interaction region is small compared to the radius of curvature of the AdS
space, but still large compared to the string Compton wave-length. Hence, one
can approximate the string vertex operators as flat-space vertex operators with
a definite momentum, which depends on the conformal and R-charges of the
operator. We then argue that the string vertex operator dual to a primary
operator is chosen by satisfying a twisted version of Q^L=Q^R, up to spurious
terms. This leads to a unique choice for a scalar vertex operator with the
appropriate charges at the first massive level. We then comment on some
features of the corresponding three-point functions, including the application
of these results to Konishi operators.Comment: 24 pages; v2: References added, typos fixed, minor change
Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents
We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag
- …
