52 research outputs found

    Subnanosecond Fluctuations in Low-Barrier Nanomagnets

    Full text link
    Fast magnetic fluctuations due to thermal torques have useful technological functionality ranging from cryptography to probabilistic computing. The characteristic time of fluctuations in typical uniaxial anisotropy magnets studied so far is bounded from below by the well-known energy relaxation mechanism. This time scales as α1\alpha^{-1}, where α\alpha parameterizes the strength of dissipative processes. Here, we theoretically analyze the fluctuating dynamics in easy-plane and antiferromagnetically coupled nanomagnets. We find in such magnets, the dynamics are strongly influenced by fluctuating intrinsic fields, which give rise to an additional dephasing-type mechanism for washing out correlations. In particular, we establish two time scales for characterizing fluctuations (i) the average time for a nanomagnet to reverse|which for the experimentally relevant regime of low damping is governed primarily by dephasing and becomes independent of α\alpha, (ii) the time scale for memory loss of a single nanomagnet|which scales as α1/3\alpha^{-1/3} and is governed by a combination of energy dissipation and dephasing mechanism. For typical experimentally accessible values of intrinsic fields, the resultant thermal-fluctuation rate is increased by multiple orders of magnitude when compared with the bound set solely by the energy relaxation mechanism in uniaxial magnets. This could lead to higher operating speeds of emerging devices exploiting magnetic fluctuations

    Photoemission signature of excitons

    Full text link
    Excitons - the particle-hole bound states - composed of localized electron-hole states in semiconducting systems are crucial to explaining the optical spectrum. Spectroscopic measurements can contain signatures of these two particle bound states and can be particularly useful in determining the characteristics of these excitons. We formulate an expression for evaluating the angle-resolved photoemission spectrum arising from the ionization of excitons given their steady-state distribution in a semiconductor. We show that the spectrum contains information about the direct/indirect band gap nature of the semiconductor and is located below the conduction band minimum displaced by the binding energy. The dispersive features of the spectrum contains remnants of the valence band while additional interesting features arise from different exciton distributions. Our results indicate that for most exciton probability distributions, the energy integrated photoemission spectrum provides an estimate of the exciton Bohr radius.Comment: 8 pages, 6 figure
    corecore