515 research outputs found

    Are black holes big enough to quench cooling in cluster cool cores?

    Full text link
    Total energy arguments (e.g., Fabian et al. 2002) suggest that black holes need to have masses significantly in excess of the prediction from the classic black hole mass - velocity dispersion relation (M-sigma) in order to offset the cooling losses in massive cool core clusters. This suggests that the black holes may be too small to power such clusters. However, Lauer et al. (2007) argue that the black hole mass - bulge luminosity relationship is a better predictor of black hole masses in high luminosity galaxies and that this relationship predicts significantly higher masses in BCGs. They find slow increase in the velocity dispersion with luminosity and a more rapid increase in effective radii with luminosity seen in BCGs as opposed to less luminous galaxies. Motivated by these results and the theoretical work of Boylan-Kolchin et al. (2006) on isolated mergers, we perform high-resolution cosmological simulations of dry mergers in a massive galaxy cluster identified in the Millennium Run including both the dark matter halos and stellar bulges of merging galaxies. We demonstrate that the BCG clearly evolves away from the size-luminosity relation as defined by the smaller galaxies (i.e., the relation bends) and we also see a bending in the luminosity-sigma relation. As black hole mass is expected to be proportional to the mass and luminosity of the stellar bulge of the BCGs (if they were formed in predominantly dissipationless mergers), our findings are consistent with those of Lauer et al. (2007) on a qualitative level and suggest that the black holes in BCGs may indeed be more massive than predicted from the standard M-sigma relation.Comment: submitted to the conference proceedings of "The Monster's Fiery Breath

    AGN Feedback and Bimodality in Cluster Core Entropy

    Full text link
    We investigate a series of steady-state models of galaxy clusters, in which the hot intracluster gas is efficiently heated by active galactic nucleus (AGN) feedback and thermal conduction, and in which the mass accretion rates are highly reduced compared to those predicted by the standard cooling flow models. We perform a global Lagrangian stability analysis. We show for the first time that the global radial instability in cool core clusters can be suppressed by the AGN feedback mechanism, provided that the feedback efficiency exceeds a critical lower limit. Furthermore, our analysis naturally shows that the clusters can exist in two distinct forms. Globally stable clusters are expected to have either: 1) cool cores stabilized by both AGN feedback and conduction, or 2) non-cool cores stabilized primarily by conduction. Intermediate central temperatures typically lead to globally unstable solutions. This bimodality is consistent with the recently observed anticorrelation between the flatness of the temperature profiles and the AGN activity (Dunn & Fabian 2008) and the observation by Rafferty et al. (2008) that the shorter central cooling times tend to correspond to significantly younger AGN X-ray cavities.Comment: 4 pages, to appear in the proceedings of "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", Eds. Sebastian Heinz, Eric Wilcots (AIP conference series

    Cold Fronts and Gas Sloshing in Galaxy Clusters with Anisotropic Thermal Conduction

    Full text link
    (Abridged) Cold fronts in cluster cool cores should be erased on short timescales by thermal conduction, unless protected by magnetic fields that are "draped" parallel to the front surfaces, suppressing conduction perpendicular to the fronts. We present MHD simulations of cold front formation in the core of a galaxy cluster with anisotropic thermal conduction, exploring a parameter space of conduction strengths parallel and perpendicular to the field lines. Including conduction has a strong effect on the temperature of the core and the cold fronts. Though magnetic field lines are draping parallel to the front surfaces, the temperature jumps across the fronts are nevertheless reduced. The field geometry is such that the cold gas below the front surfaces can be connected to hotter regions outside via field lines along directions perpendicular to the plane of the sloshing motions and along sections of the front which are not perfectly draped. This results in the heating of this gas below the front on a timescale of a Gyr, but the sharpness of the density and temperature jumps may still be preserved. By modifying the density distribution below the front, conduction may indirectly aid in suppressing Kelvin-Helmholtz instabilities. If conduction along the field lines is unsuppressed, we find that the characteristic sharp jumps in X-ray emission seen in observations of clusters do not form. This suggests that the presence of sharp cold fronts in hot clusters could be used to place upper limits on conduction in the {\it bulk} of the ICM. Finally, the combination of sloshing and anisotropic thermal conduction can result in a larger flux of heat to the core than either process in isolation. While still not sufficient to prevent a cooling catastrophe in the very central (rr \sim 5 kpc) regions of the cool core, it reduces significantly the mass of cool gas that accumulates outside those radii.Comment: 19 pages, 14 figures, "emulateapj" format. Updated version to match referee's comments and suggestions. Accepted by the Astrophysical Journa

    Shock heating by FR I radio sources in galaxy clusters

    Full text link
    Feedback by active galactic nuclei (AGN) is frequently invoked to explain the cut-off of the galaxy luminosity function at the bright end and the absence of cooling flows in galaxy clusters. Meanwhile, there are recent observations of shock fronts around radio-loud AGN. Using realistic 3D simulations of jets in a galaxy cluster, we address the question what fraction of the energy of active galactic nuclei is dissipated in shocks. We find that weak shocks that encompass the AGN have Mach numbers of 1.1-1.2 and dissipate at least 2% of the mechanical luminosity of the AGN. In a realistic cluster medium, even a continuous jet can lead to multiple shock structures, which may lead to an overestimate of the AGN duty cycles inferred from the spatial distribution of waves.Comment: accepted by MNRAS Letter

    Chaotic cold accretion onto black holes

    Full text link
    Using 3D AMR simulations, linking the 50 kpc to the sub-pc scales over the course of 40 Myr, we systematically relax the classic Bondi assumptions in a typical galaxy hosting a SMBH. In the realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the nonlinear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when t_cool/t_ff < 10. Subsonic turbulence of just over 100 km/s (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (t_turb/t_cool < 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for fluctuations. Chaotic cold accretion may be common in many systems, such as hot galactic halos, groups, and clusters, generating high-velocity clouds and strong variations of the AGN luminosity and jet orientation. In this mode, the black hole can quickly react to the state of the entire host galaxy, leading to efficient self-regulated AGN feedback and the symbiotic Magorrian relation. During phases of overheating, the hot mode becomes the single channel of accretion (with a different cuspy temperature profile), though strongly suppressed by turbulence.Comment: Accepted by MNRAS: added comments and references. Your feedback is welcom

    Impact of tangled magnetic fields on AGN-blown bubbles

    Full text link
    There is growing consensus that feedback from AGN is the main mechanism responsible for stopping cooling flows in clusters of galaxies. AGN are known to inflate buoyant bubbles that supply mechanical power to the intracluster gas (ICM). High Reynolds number hydrodynamical simulations show that such bubbles get entirely disrupted within 100 Myr, as they rise in cluster atmospheres, which is contrary to observations. This artificial mixing has consequences for models trying to quantify the amount of heating and star formation in cool core clusters of galaxies. It has been suggested that magnetic fields can stabilize bubbles against disruption. We perform MHD simulations of fossil bubbles in the presence of tangled magnetic fields using the high order PENCIL code. We focus on the physically-motivated case where thermal pressure dominates over magnetic pressure and consider randomly oriented fields with and without maximum helicity and a case where large scale external fields drape the bubble.We find that helicity has some stabilizing effect. However, unless the coherence length of magnetic fields exceeds the bubble size, the bubbles are quickly shredded. As observations of Hydra A suggest that lengthscale of magnetic fields may be smaller then typical bubble size, this may suggest that other mechanisms, such as viscosity, may be responsible for stabilizing the bubbles. However, since Faraday rotation observations of radio lobes do not constrain large scale ICM fields well if they are aligned with the bubble surface, the draping case may be a viable alternative solution to the problem. A generic feature found in our simulations is the formation of magnetic wakes where fields are ordered and amplified. We suggest that this effect could prevent evaporation by thermal conduction of cold Halpha filaments observed in the Perseus cluster.Comment: accepted for publication in MNRAS, (downgraded resolution figures, color printing recommended

    Cosmological MHD simulations of cluster formation with anisotropic thermal conduction

    Full text link
    (abridged) The ICM has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially. Using cosmological simulations of the Santa Barbara cluster we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and SKA and future X-ray spectroscopic studies with the IXO. We demonstrate that radiative cooling boosts the amplification of the magnetic field by about two orders of magnitude beyond what is expected in the non-radiative cases. At z=0 the field is amplified by a factor of about 10^6 compared to the uniform magnetic field evolved due to the universal expansion alone. Interestingly, the runs that include both radiative cooling and anisotropic thermal conduction exhibit stronger magnetic field amplification than purely radiative runs at the off-center locations. In these runs, shallow temperature gradients away from the cluster center make the ICM neutrally buoyant. The ICM is more easily mixed in these regions and the winding up of the frozen-in magnetic field is more efficient resulting in stronger magnetic field amplification.Comment: submitted to ApJ, higher resolution figures available at: http://www.astro.lsa.umich.edu/~mateuszr
    corecore