12 research outputs found
DKK1 Mediated Inhibition of Wnt Signaling in Postnatal Mice Leads to Loss of TEC Progenitors and Thymic Degeneration
Thymic epithelial cell (TEC) microenvironments are essential for the recruitment of T cell precursors from the bone marrow, as well as the subsequent expansion and selection of thymocytes resulting in a mature self-tolerant T cell repertoire. The molecular mechanisms, which control both the initial development and subsequent maintenance of these critical microenvironments, are poorly defined. Wnt signaling has been shown to be important to the development of several epithelial tissues and organs. Regulation of Wnt signaling has also been shown to impact both early thymocyte and thymic epithelial development. However, early blocks in thymic organogenesis or death of the mice have prevented analysis of a role of canonical Wnt signaling in the maintenance of TECs in the postnatal thymus.Here we demonstrate that tetracycline-regulated expression of the canonical Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult mice, results in rapid thymic degeneration characterized by a loss of DeltaNP63(+) Foxn1(+) and Aire(+) TECs, loss of K5K8DP TECs thought to represent or contain an immature TEC progenitor, decreased TEC proliferation and the development of cystic structures, similar to an aged thymus. Removal of DKK1 from DKK1-involuted mice results in full recovery, suggesting that canonical Wnt signaling is required for the differentiation or proliferation of TEC populations needed for maintenance of properly organized adult thymic epithelial microenvironments.Taken together, the results of this study demonstrate that canonical Wnt signaling within TECs is required for the maintenance of epithelial microenvironments in the postnatal thymus, possibly through effects on TEC progenitor/stem cell populations. Downstream targets of Wnt signaling, which are responsible for maintenance of these TEC progenitors may provide useful targets for therapies aimed at counteracting age associated thymic involution or the premature thymic degeneration associated with cancer therapy and bone marrow transplants
Dkk1 mediated inhibition of Wnt Signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration (36.32)
Abstract
The molecular mechanisms, which control both the initial development and subsequent maintenance of TEC microenvironments, are poorly defined. Regulation of Wnt signaling has been shown to impact both early thymocyte and thymic epithelial development. Early blocks in thymic organogenesis or death of the mice have prevented analysis of a role of Wnt signaling in the maintenance of TECs in the postnatal thymus. Tetracycline-regulated expression of the Wnt inhibitor DKK1 in cTECs and mTECs of adult mice, results in rapid thymic degeneration characterized by a reduced Foxn1 expression, loss of K5K8DP putative TEC progenitors, decreased proliferation and the development of cystic structures, similar to an aged thymus. Removal of DKK1 from DKK1-involuted mice results in full recovery, suggesting that canonical Wnt signaling is required for the differentiation or proliferation of TEC populations needed for maintenance of properly organized adult thymic epithelial microenvironments. The results of this study demonstrate that canonical Wnt signaling within TECs is required for the maintenance of epithelial microenvironments in the postnatal thymus, possibly through effects on TEC progenitor/stem cell populations. Downstream targets of Wnt signaling, which are responsible for maintenance of these TEC progenitors may provide useful targets for therapies aimed at counteracting age associated thymic involution or the premature thymic degeneration associated bone marrow transplants.</jats:p
From compartments to gene loops: Functions of the 3D genome in the human brain
Abstract
The 3D genome plays a key role in the regulation of gene expression. However, little is known about the spatiotemporal organization of chromatin during human brain development. We investigated the 3D genome in human fetal cortical plate and in adult prefrontal cortical neurons and glia. We found that neurons have weaker compartments than glia that emerge during fetal development. Furthermore, neurons form loop domains whereas glia form compartment domains. We show through CRISPRi on CNTNAP2 that transcription is coupled to loop domain insulation. Gene regulation during neural development involves increased use of enhancer-promoter and repressor-promoter loops. Finally, transcription is associated with gene loops. Altogether, we provide novel insights into the relationship between gene expression and different scales of chromatin organization in the human brain.</jats:p
A multi-regional human brain atlas of chromatin accessibility and gene expression facilitates promoter-isoform resolution genetic fine-mapping
Brain region- and cell-specific transcriptomic and epigenomic features are associated with heritability for neuropsychiatric traits, but a systematic view, considering cortical and subcortical regions, is lacking. Here, we provide an atlas of chromatin accessibility and gene expression profiles in neuronal and non-neuronal nuclei across 25 distinct human cortical and subcortical brain regions from 6 neurotypical controls. We identified extensive gene expression and chromatin accessibility differences across brain regions, including variation in alternative promoter-isoform usage and enhancer-promoter interactions. Genes with distinct promoter-isoform usage across brain regions were strongly enriched for neuropsychiatric disease risk variants. Moreover, we built enhancer-promoter interactions at promoter-isoform resolution across different brain regions and highlighted the contribution of brain region-specific and promoter-isoform-specific regulation to neuropsychiatric disorders. Including promoter-isoform resolution uncovers additional distal elements implicated in the heritability of diseases, thereby increasing the power to fine-map risk genes. Our results provide a valuable resource for studying molecular regulation across multiple regions of the human brain and underscore the importance of considering isoform information in gene regulation.
Brain gene regulation is key for neuropsychiatric disorders. Here, the authors show that profiling gene expression and chromatin states in 25 brain regions enables enhancer-promoter mapping at isoform resolution, improving genetic fine-mapping
From compartments to gene loops: Functions of the 3D genome in the human brain
AbstractThe 3D genome plays a key role in the regulation of gene expression. However, little is known about the spatiotemporal organization of chromatin during human brain development. We investigated the 3D genome in human fetal cortical plate and in adult prefrontal cortical neurons and glia. We found that neurons have weaker compartments than glia that emerge during fetal development. Furthermore, neurons form loop domains whereas glia form compartment domains. We show through CRISPRi on CNTNAP2 that transcription is coupled to loop domain insulation. Gene regulation during neural development involves increased use of enhancer-promoter and repressor-promoter loops. Finally, transcription is associated with gene loops. Altogether, we provide novel insights into the relationship between gene expression and different scales of chromatin organization in the human brain.</jats:p
Genetic regulation of cell-type specific chromatin accessibility shapes the etiology of brain diseases
AbstractNucleotide variants in cell type-specific gene regulatory elements in the human brain are major risk factors of human disease. We measured chromatin accessibility in sorted neurons and glia from 1,932 samples of human postmortem brain and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTL). Only 10.4% of caQTL are shared between neurons and glia, supporting the cell type specificity of genetic regulation of the brain regulome. Incorporating allele specific chromatin accessibility improves statistical fine-mapping and refines molecular mechanisms underlying disease risk. Using massively parallel reporter assays in induced excitatory neurons, we screened 19,893 brain QTLs, identifying the functional impact of 476 regulatory variants. Combined, this comprehensive resource captures variation in the human brain regulome and provides novel insights into brain disease etiology.One sentence summaryCell-type specific chromatin accessibility QTL reveals regulatory mechanisms underlying brain diseases.</jats:sec
The three-dimensional landscape of chromatin accessibility in Alzheimer’s disease
AbstractMuch is still unknown about the neurobiology of Alzheimer’s disease (AD). To better understand AD, we generated 636 ATAC-seq libraries from cases and controls to construct detailed genomewide chromatin accessibility maps of neurons and non-neurons from two AD-affected brain regions, the entorhinal cortex and superior temporal gyrus. By analyzing a total of 19.6 billion read pairs, we expanded the known repertoire of regulatory sequences in the human brain. Multi-omic data integration associated global patterns of chromatin accessibility with gene expression and identified cell-specific enhancer-promoter interactions. Using inter-individual variation in chromatin accessibility, we define cis-regulatory domains capturing the 3D structure of the genome. Multifaceted analyses uncovered disease associated perturbations impacting chromatin accessibility, transcription factor regulatory networks and the 3D genome, and implicated transcriptional dysregulation in AD. Overall, we applied a systematic approach to understand the role of the 3D genome in AD and to illuminate novel disease biology that can advance diagnosis and therapy.</jats:p
Population-level variation of enhancer expression identifies novel disease mechanisms in the human brain
AbstractIdentification of risk variants for neuropsychiatric diseases within enhancers underscores the importance of understanding the population-level variation of enhancers in the human brain. Besides regulating tissue- and cell-type-specific transcription of target genes, enhancers themselves can be transcribed. We expanded the catalog of known human brain transcribed enhancers by an order of magnitude by generating and jointly analyzing large-scale cell-type-specific transcriptome and regulome data. Examination of the transcriptome in 1,382 brain samples in two independent cohorts identified robust expression of transcribed enhancers. We explored gene-enhancer coordination and found that enhancer-linked genes are strongly implicated in neuropsychiatric disease. We identified significant expression quantitative trait loci (eQTL) for 25,958 enhancers which mediate 6.8% of schizophrenia heritability, mostly independent from standard gene eQTL. Inclusion of enhancer eQTL in transcriptome-wide association studies enhanced functional interpretation of disease loci. Overall, our study characterizes the enhancer-gene regulome and genetic mechanisms in the human cortex in both healthy and disease states.</jats:p
The neuronal chromatin landscape in adult schizophrenia brains is linked to early fetal development.
Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain region
The neuronal chromatin landscape in adult schizophrenia brains is linked to early fetal development.
Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain region
