1,842 research outputs found
Consequences of the center-of-mass correction in nuclear mean-field models
We study the influence of the scheme for the correction for spurious
center-of-mass motion on the fit of effective interactions for self-consistent
nuclear mean-field calculations. We find that interactions with very simple
center-of-mass correction have significantly larger surface coefficients than
interactions for which the center-of-mass correction was calculated for the
actual many-body state during the fit. The reason for that is that the
effective interaction has to counteract the wrong trends with nucleon number of
all simplified schemes for center-of-mass correction which puts a wrong trend
with mass number into the effective interaction itself. The effect becomes
clearly visible when looking at the deformation energy of largely deformed
systems, e.g. superdeformed states or fission barriers of heavy nuclei.Comment: 12 pages LATeX, needs EPJ style files, 5 eps figures, accepted for
publication in Eur. Phys. J.
Pairing gaps from nuclear mean-field models
We discuss the pairing gap, a measure for nuclear pairing correlations, in
chains of spherical, semi-magic nuclei in the framework of self-consistent
nuclear mean-field models. The equations for the conventional BCS model and the
approximate projection-before-variation Lipkin-Nogami method are formulated in
terms of local density functionals for the effective interaction. We calculate
the Lipkin-Nogami corrections of both the mean-field energy and the pairing
energy. Various definitions of the pairing gap are discussed as three-point,
four-point and five-point mass-difference formulae, averaged matrix elements of
the pairing potential, and single-quasiparticle energies. Experimental values
for the pairing gap are compared with calculations employing both a delta
pairing force and a density-dependent delta interaction in the BCS and
Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking
approximation which neglects part of the the core polarization in the odd
nucleus. We find that the five-point mass difference formula gives a very
robust description of the odd-even staggering, other approximations for the gap
may differ from that up to 30% for certain nuclei.Comment: 17 pages, 8 figures. Accepted for publication in EPJ
Factors that Contribute to Resident Teaching Effectiveness
Background One of the key components of residency training is to become an educator. Resident physicians teach students, advanced practice providers, nurses, and even faculty on a daily basis. Objective The goal of this study was to identify the objective characteristics of residents, which correlate with perceived overall teaching effectiveness. Methods We conducted a one-year, retrospective study to identify factors that were associated with higher resident teaching evaluations. Senior emergency medicine (EM) teaching residents are evaluated by medical students following clinical teaching shifts. Eighteen factors pertaining to resident teaching effectiveness were chosen. Two items from the medical students' evaluations were analyzed against each factor: teaching effectiveness was measured on a five-point Likert scale and an overall teaching score (1-75). Results A total of 46 EM residents and 843 medical student evaluations were analyzed. The ACGME milestones for systems-based practice (p = 0.02) and accountability (p = 0.05) showed a statistically significant association with a rating of "five" on the Likert scale for teaching effectiveness. Three other ACGME milestones, systems-based practice (p = 0.01), task switching (p = 0.04), and team management (p = 0.03) also showed a statically significant association of receiving a score of 70 or greater on the overall teaching score. Conclusion Residents with higher performance associated with system management and accountability were perceived as highly effective teachers. USMLE and in-service exams were not predictive of higher teaching evaluations. Our data also suggest that effective teachers are working in both academic and community settings, providing a potential resource to academic departments and institutions
Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model
We present results obtained in the calculation of nuclear ground state
properties in relativistic Hartree approximation using a Lagrangian whose
QCD-scaled coupling constants are all natural (dimensionless and of order 1).
Our model consists of four-, six-, and eight-fermion point couplings (contact
interactions) together with derivative terms representing, respectively, two-,
three-, and four-body forces and the finite ranges of the corresponding mesonic
interactions. The coupling constants have been determined in a self-consistent
procedure that solves the model equations for representative nuclei
simultaneously in a generalized nonlinear least-squares adjustment algorithm.
The extracted coupling constants allow us to predict ground state properties of
a much larger set of even-even nuclei to good accuracy. The fact that the
extracted coupling constants are all natural leads to the conclusion that QCD
scaling and chiral symmetry apply to finite nuclei.Comment: 44 pages, 13 figures, 9 tables, REVTEX, accepted for publication in
Phys. Rev.
Potential energy surfaces of superheavy nuclei
We investigate the structure of the potential energy surfaces of the
superheavy nuclei 258Fm, 264Hs, (Z=112,N=166), (Z=114,N=184), and (Z=120,N=172)
within the framework of self-consistent nuclear models, i.e. the
Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare
results obtained with one representative parametrisation of each model which is
successful in describing superheavy nuclei. We find systematic changes as
compared to the potential energy surfaces of heavy nuclei in the uranium
region: there is no sufficiently stable fission isomer any more, the importance
of triaxial configurations to lower the first barrier fades away, and
asymmetric fission paths compete down to rather small deformation. Comparing
the two models, it turns out that the relativistic mean-field model gives
generally smaller fission barriers.Comment: 8 pages RevTeX, 6 figure
Superheavy nuclei in selfconsistent nuclear calculations
The shell structure of superheavy nuclei is investigated within various
parametrizations of relativistic and nonrelativistic nuclear mean field models.
The heaviest known even-even nucleus 264Hs is used as a benchmark to estimate
the predictive value of the models. From that starting point, doubly magic
spherical nuclei are searched in the region Z=110-140 and N=134-298. They are
found at (Z=114, N=184), (Z=120, N=172), or at (Z=126, N=184), depending on the
parametrization.Comment: 16 pages RevTeX, 2 tables, 2 low resolution Gif figures (high
resolution PostScript versions are available at
http://www.th.physik.uni-frankfurt.de/~bender/nucl_struct_publications.html
or at ftp://th.physik.uni-frankfurt.de/pub/bender ), submitted to Phys. Rev.
Comment on ``Structure of exotic nuclei and superheavy elements in a relativistic shell model''
A recent paper [M. Rashdan, Phys. Rev. C 63, 044303 (2001)] introduces the
new parameterization NL-RA1 of the relativistic mean-field model which is
claimed to give a better description of nuclear properties than earlier ones.
Using this model ^{298}114 is predicted to be a doubly-magic nucleus. As will
be shown in this comment these findings are to be doubted as they are obtained
with an unrealistic parameterization of the pairing interaction and neglecting
ground-state deformation.Comment: 2 pages REVTEX, 3 figures, submitted to comment section of Phys. Rev.
C. shortened and revised versio
Emergency Physicians Are Able to Detect Right Ventricular Dilation With Good Agreement Compared to Cardiology
Objective
Focused cardiac ultrasound (FOCUS) is a useful tool in evaluating patients presenting to the emergency department (ED) with acute dyspnea. Prior work has shown that right ventricular (RV) dilation is associated with repeat hospitalizations and shorter life expectancy. Traditionally, RV assessment has been evaluated by cardiologist-interpreted comprehensive echocardiography. The primary goal of this study was to determine the inter-rater reliability between emergency physicians (EPs) and a cardiologist for determining RV dilation on FOCUS performed on ED patients with acute dyspnea.
Methods
This was a prospective, observational study at two urban academic EDs; patients were enrolled if they had acute dyspnea and a computed tomographic pulmonary angiogram without acute disease. All patients had an EP-performed FOCUS to assess for RV dilation. RV dilation was defined as an RV to left ventricular ratio greater than 1. FOCUS interpretations were compared to a blinded cardiologist FOCUS interpretation using agreement and kappa statistics.
Results
Of 84 FOCUS examinations performed on 83 patients, 17% had RV dilation. Agreement and kappa, for EP-performed FOCUS for RV dilation were 89% (95% confidence interval [CI] 80–95%) and 0.68 (95% CI 0.48–0.88), respectively.
Conclusions
Emergency physician sonographers are able to detect RV dilation with good agreement when compared to cardiology. These results support the wider use of EP-performed FOCUS to evaluate for RV dilation in ED patients with dyspnea
An HFB scheme in natural orbitals
We present a formulation of the Hartree-Fock-Bogoliubov (HFB) equations which
solves the problem directly in the basis of natural orbitals. This provides a
very efficient scheme which is particularly suited for large scale calculations
on coordinate-space grids.Comment: 5 pages RevTeX, (Postscript-file also available at
http://www.th.physik.uni-frankfurt.de/~bender/nucl_struct_publications.html
or at ftp://th.physik.uni-frankfurt.de/pub/bender ), accepted for publication
in Z. Phys.
- …
