2,777 research outputs found
Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution
Room-Temperature Routes Toward the Creation of Zinc Oxide Films from Molecular Precursors
The fabrication of “flexible” electronics on plastic substrates with low melting points requires the development of thin-film deposition techniques that operate at low temperatures. This is easily achieved with vacuum- or solution-processed molecular or polymeric semiconductors, but oxide materials remain a significant challenge. Here, we show that zinc oxide (ZnO) can be prepared using only room-temperature processes, with the molecular thin-film precursor zinc phthalocyanine (ZnPc), followed by UV-light treatment in vacuum to elicit degradation of the organic components and transformation of the deposited film to the oxide material. The degradation mechanism was assessed by studying the influence of the atmosphere during the reaction: it was particularly sensitive to the oxygen pressure in the chamber and optimal degradation conditions were established as 3 mbar with 40% oxygen in nitrogen. The morphology of the film remained relatively unchanged during the reaction, but a detailed analysis of its composition using both scanning transmission electron microscopy and secondary ion mass spectrometry revealed that a 40 nm thick layer containing ZnO results from the 100 nm thick precursor after complete reaction. Our methodology represents a simple route for the fabrication of oxides and multilayer structures that can be easily integrated into current molecular thin-film growth setups, without the need for a high-temperature step
Chemical speciation of nanoparticles surrounding metal-on-metal hips.
Spectromicroscopy of tissue surrounding failed CoCr metal-on-metal hip replacements detected corroded nanoscale debris in periprosthetic tissue in two chemical states, with concomitant mitochondrial damage. The majority of debris contained Cr(3+), with trace amounts of oxidised cobalt. A minority phase containing a core of metallic chromium and cobalt was also observed
Negotiating daughterhood and strangerhood: retrospective accounts of serial migration
Most considerations of daughtering and mothering take for granted that the subjectivities of mothers and daughters are negotiated in contexts of physical proximity throughout daughters’ childhoods. Yet many mothers and daughters spend periods separated from each other, sometimes across national borders. Globally, an increasing number of children experience life in transnational families.
This paper examines the retrospective narratives of four women who were serial migrants as children (whose parents migrated before they did) . It focuses on their accounts of the reunion with their mothers and how these fit with the ways in which they construct their mother-daughter relationships. We take a psychosocial approach by using a psychoanalytically-informed reading of these narratives to acknowledge the complexities of the attachments produced in the context of migration and to attend to the multi-layered psychodynamics of the resulting relationships. The paper argues that serial migration positioned many of the daughters in a conflictual emotional landscape from which they had to negotiate ‘strangerhood’ in the context of sadness at leaving people to whom they were attached in order to join their mothers (or parents). As a result, many were resistant to being positioned as daughters, doing daughtering and being mothered in their new homes
DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose
Macroautophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. The process operates under basal conditions as a mechanism to turnover damaged or misfolded proteins and organelles. As a result, it has a major role in preserving cellular integrity and viability. In addition to this basal function, macroautophagy can also be modulated in response to various forms of cellular stress, and the rate and cargoes of macroautophagy can be tailored to facilitate appropriate cellular responses in particular situations. The macroautophagy machinery is regulated by a group of evolutionarily conserved autophagy-related (ATG) proteins and by several other autophagy regulators, which either have tissue-restricted expression or operate in specific contexts. We report here the characterization of a novel autophagy regulator that we have termed DRAM-3 due to its significant homology to damage-regulated autophagy modulator (DRAM-1). DRAM-3 is expressed in a broad spectrum of normal tissues and tumor cells, but different from DRAM-1, DRAM-3 is not induced by p53 or DNA-damaging agents. Immunofluorescence studies revealed that DRAM-3 localizes to lysosomes/autolysosomes, endosomes and the plasma membrane, but not the endoplasmic reticulum, phagophores, autophagosomes or Golgi, indicating significant overlap with DRAM-1 localization and with organelles associated with macroautophagy. In this regard, we further proceed to show that DRAM-3 expression causes accumulation of autophagosomes under basal conditions and enhances autophagic flux. Reciprocally, CRISPR/Cas9-mediated disruption of DRAM-3 impairs autophagic flux confirming that DRAM-3 is a modulator of macroautophagy. As macroautophagy can be cytoprotective under starvation conditions, we also tested whether DRAM-3 could promote survival on nutrient deprivation. This revealed that DRAM-3 can repress cell death and promote long-term clonogenic survival of cells grown in the absence of glucose. Interestingly, however, this effect is macroautophagy-independent. In summary, these findings constitute the primary characterization of DRAM-3 as a modulator of both macroautophagy and cell survival under starvation conditions
Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway
The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al
Reviewing evidence of marine ecosystem change off South Africa
Recent changes have been observed in South African marine ecosystems. The main pressures on these
ecosystems are fishing, climate change, pollution, ocean acidification and mining. The best long-term datasets are
for trends in fishing pressures but there are many gaps, especially for non-commercial species. Fishing pressures
have varied over time, depending on the species being caught. Little information exists for trends in other
anthropogenic pressures. Field observations of environmental variables are limited in time and space. Remotely
sensed satellite data have improved spatial and temporal coverage but the time-series are still too short to
distinguish long-term trends from interannual and decadal variability. There are indications of recent cooling on the
West and South coasts and warming on the East Coast over a period of 20 - 30 years. Oxygen concentrations on the
West Coast have decreased over this period. Observed changes in offshore marine communities include southward
and eastward changes in species distributions, changes in abundance of species, and probable alterations in
foodweb dynamics. Causes of observed changes are difficult to attribute. Full understanding of marine ecosystem
change requires ongoing and effective data collection, management and archiving, and coordination in carrying out
ecosystem research.DHE
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Collaboration and knowledge exchange between scholars in Britain and the empire, 1830–1914
In recent years there has been a growing interest among historians in the British Empire as a space of knowledge production and circulation. Much of this work assumes that scholarly cooperation and collaboration between individuals and institutions within the Empire had the effect (and often also the aim) of strengthening both imperial ties and the idea of empire. This chapter argues, however, that many examples of scholarly travel, exchange, and collaboration were undertaken with very different goals in mind. In particular, it highlights the continuing importance of an ideal of scientific internationalism, which stressed the benefits of scholarship for the whole of humanity and prioritized the needs and goals of individual academic and scientific disciplines. As the chapter shows, some scholars even went on to develop nuanced critiques of the imperial project while using the very structures of empire to further their own individual, disciplinary and institutional goals
- …
