1,549 research outputs found
Binary neutron star mergers: a jet engine for short gamma-ray bursts
We perform magnetohydrodynamic simulations in full general relativity (GRMHD)
of quasi-circular, equal-mass, binary neutron stars that undergo merger. The
initial stars are irrotational, polytropes and are magnetized. We explore
two types of magnetic-field geometries: one where each star is endowed with a
dipole magnetic field extending from the interior into the exterior, as in a
pulsar, and the other where the dipole field is initially confined to the
interior. In both cases the adopted magnetic fields are initially dynamically
unimportant. The merger outcome is a hypermassive neutron star that undergoes
delayed collapse to a black hole (spin parameter )
immersed in a magnetized accretion disk. About ms following merger, the region above the black hole poles
becomes strongly magnetized, and a collimated, mildly relativistic outflow ---
an incipient jet --- is launched. The lifetime of the accretion disk, which
likely equals the lifetime of the jet, is s. In contrast to black hole--neutron star mergers, we find
that incipient jets are launched even when the initial magnetic field is
confined to the interior of the stars.Comment: 6 pages, 3 figures, 1 table, matches published versio
Localizing coalescing massive black hole binaries with gravitational waves
Massive black hole binary coalescences are prime targets for space-based
gravitational wave (GW) observatories such as {\it LISA}. GW measurements can
localize the position of a coalescing binary on the sky to an ellipse with a
major axis of a few tens of arcminutes to a few degrees, depending on source
redshift, and a minor axis which is times smaller. Neglecting weak
gravitational lensing, the GWs would also determine the source's luminosity
distance to better than percent accuracy for close sources, degrading to
several percent for more distant sources. Weak lensing cannot, in fact, be
neglected and is expected to limit the accuracy with which distances can be
fixed to errors no less than a few percent. Assuming a well-measured cosmology,
the source's redshift could be inferred with similar accuracy. GWs alone can
thus pinpoint a binary to a three-dimensional ``pixel'' which can help guide
searches for the hosts of these events. We examine the time evolution of this
pixel, studying it at merger and at several intervals before merger. One day
before merger, the major axis of the error ellipse is typically larger than its
final value by a factor of . The minor axis is larger by a factor
of , and, neglecting lensing, the error in the luminosity distance is
larger by a factor of . This large change over a short period of
time is due to spin-induced precession, which is strongest in the final days
before merger. The evolution is slower as we go back further in time. For , we find that GWs will localize a coalescing binary to within $\sim 10\
\mathrm{deg}^2$ as early as a month prior to merger and determine distance (and
hence redshift) to several percent.Comment: 30 pages, 10 figures, 5 tables. Version published in Ap
Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries
We investigate the capability of LISA to measure the sky position of
equal-mass, nonspinning black hole binaries, combining for the first time the
entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the
complete three-channel LISA response. We consider an ensemble of systems near
the peak of LISA's sensitivity band, with total rest mass of 2\times10^6
M\odot, a redshift of z = 1, and randomly chosen orientations and sky
positions. We find median sky localization errors of approximately \sim3
arcminutes. This is comparable to the field of view of powerful electromagnetic
telescopes, such as the James Webb Space Telescope, that could be used to
search for electromagnetic signals associated with merging massive black holes.
We investigate the way in which parameter errors decrease with measurement
time, focusing specifically on the additional information provided during the
merger-ringdown segment of the signal. We find that this information improves
all parameter estimates directly, rather than through diminishing correlations
with any subset of well- determined parameters. Although we have employed the
baseline LISA design for this study, many of our conclusions regarding the
information provided by mergers will be applicable to alternative mission
designs as well.Comment: 9 pages, 5 figures, submitted to Phys. Rev.
Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral
The early part of the gravitational wave signal of binary neutron star
inspirals can potentially yield robust information on the nuclear equation of
state. The influence of a star's internal structure on the waveform is
characterized by a single parameter: the tidal deformability lambda, which
measures the star's quadrupole deformation in response to the companion's
perturbing tidal field. We calculate lambda for a wide range of equations of
state and find that the value of lambda spans an order of magnitude for the
range of equation of state models considered.
An analysis of the feasibility of discriminating between neutron star
equations of state with gravitational wave observations of the early part of
the inspiral reveals that the measurement error in lambda increases steeply
with the total mass of the binary. Comparing the errors with the expected range
of lambda, we find that Advanced LIGO observations of binaries at a distance of
100 Mpc will probe only unusually stiff equations of state, while the proposed
Einstein Telescope is likely to see a clean tidal signature.Comment: 12 pages, submitted to PR
Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA
We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters
Advanced localization of massive black hole coalescences with LISA
The coalescence of massive black holes is one of the primary sources of
gravitational waves (GWs) for LISA. Measurements of the GWs can localize the
source on the sky to an ellipse with a major axis of a few tens of arcminutes
to a few degrees, depending on source redshift, and a minor axis which is 2--4
times smaller. The distance (and thus an approximate redshift) can be
determined to better than a per cent for the closest sources we consider,
although weak lensing degrades this performance. It will be of great interest
to search this three-dimensional `pixel' for an electromagnetic counterpart to
the GW event. The presence of a counterpart allows unique studies which combine
electromagnetic and GW information, especially if the counterpart is found
prior to final merger of the holes. To understand the feasibility of early
counterpart detection, we calculate the evolution of the GW pixel with time. We
find that the greatest improvement in pixel size occurs in the final day before
merger, when spin precession effects are maximal. The source can be localized
to within 10 square degrees as early as a month before merger at ; for
higher redshifts, this accuracy is only possible in the last few days.Comment: 11 pages, 4 figures, version published in Classical and Quantum
Gravity (special issue for proceedings of 7th International LISA Symposium
The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs
After their successful first observing run (September 12, 2015 - January 12,
2016), the Advanced LIGO detectors were upgraded to increase their sensitivity
for the second observing run (November 30, 2016 - August 26, 2017). The
Advanced Virgo detector joined the second observing run on August 1, 2017. We
discuss the updates that happened during this period in the GstLAL-based
inspiral pipeline, which is used to detect gravitational waves from the
coalescence of compact binaries both in low latency and an offline
configuration. These updates include deployment of a zero-latency whitening
filter to reduce the over-all latency of the pipeline by up to 32 seconds,
incorporation of the Virgo data stream in the analysis, introduction of a
single-detector search to analyze data from the periods when only one of the
detectors is running, addition of new parameters to the likelihood ratio
ranking statistic, increase in the parameter space of the search, and
introduction of a template mass-dependent glitch-excision thresholding method.Comment: 12 pages, 7 figures, to be submitted to Phys. Rev. D, comments
welcom
- …
