1,260 research outputs found

    Asymptotic law of likelihood ratio for multilayer perceptron models

    Full text link
    We consider regression models involving multilayer perceptrons (MLP) with one hidden layer and a Gaussian noise. The data are assumed to be generated by a true MLP model and the estimation of the parameters of the MLP is done by maximizing the likelihood of the model. When the number of hidden units of the true model is known, the asymptotic distribution of the maximum likelihood estimator (MLE) and the likelihood ratio (LR) statistic is easy to compute and converge to a χ2\chi^2 law. However, if the number of hidden unit is over-estimated the Fischer information matrix of the model is singular and the asymptotic behavior of the MLE is unknown. This paper deals with this case, and gives the exact asymptotic law of the LR statistics. Namely, if the parameters of the MLP lie in a suitable compact set, we show that the LR statistics is the supremum of the square of a Gaussian process indexed by a class of limit score functions.Comment: 19 page

    Testing the number of parameters with multidimensional MLP

    No full text
    International audienceThis work concerns testing the number of parameters in one hidden layer multilayer perceptron (MLP). For this purpose we assume that we have identifiable models, up to a finite group of transformations on the weights, this is for example the case when the number of hidden units is know. In this framework, we show that we get a simple asymptotic distribution, if we use the logarithm of the determinant of the empirical error covariance matrix as cost function

    Estimating the Number of Regimes of Non-linear Autoregressive Models.

    No full text
    International audienceAutoregressive regime-switching models are being widely used in modelling financial and economic time series such as business cycles (Hamilton, 1989; Lam, 1990), exchange rates (Engle and Hamilton, 1990), financial panics (Schwert, 1989) or stock prices (Wong and Li, 2000). When the number of regimes is fixed the statistical inference is relatively straightforward and the asymptotic properties of the estimates may be established (Francq and Roussignol, 1998; Krishnamurthy and Rydén, 1998; Douc R., Moulines E. and Rydén T., 2004). However, the problem of selecting the number of regimes is far less obvious and hasn't been completely answered yet. When the number of regimes is unknown, identifiability problems arise and the likelihood ratio test statistic (LRTS hereafter) is no longer convergent to a χ2\chi^{2}-distribution. In this paper, we consider models which allow the series to switch between regimes and we propose to study such models without knowing the form of the density of the noise. The problem we address here is how to select the number of components or number of regimes. One possible method to answer this problem is to consider penalized criteria. The consistency of a modified BIC criterion was recently proven in the framework of likelihood criterion for linear switching models (see Oltéanu and Rynkiewicz). We extend these results to mixtures of nonlinear autoregressive models with mean square error criterion and prove the consistency of a penalized estimate for the number of components under some regularity conditions

    Consistance d'un estimateur de minimum de variance étendue

    No full text
    National audienceWe consider a generalization of the criterion minimized by the K-means algorithm, where a neighborhood structure is used in the calculus of the variance. Such tool is used, for example with Kohonen maps, to measure the quality of the quantification preserving the neighborhood relationships. If we assume that the parameter vector is in a compact Euclidean space and all it components are separated by a minimal distance, we show the strong consistency of the set of parameters almost realizing the minimum of the empirical extended variance

    Estimation consistante de l'architecture des perceptrons multicouches

    Get PDF
    National audienceWe consider regression models involving multilayer perceptrons (MLP) with one hidden layer and a Gaussian noise. The estimation of the parameters of the MLP can be done by maximizing the likelihood of the model. In this framework, it is difficult to determine the true number of hidden units because the information matrix of Fisher is not invertible if this number is overestimated. However, if the parameters of the MLP are in a compact set, we prove that the minimization of a suitable information criteria leads to consistent estimation of the true number of hidden units

    Dynamical Equilibrium, trajectories study in an economical system. The case of the labor market

    Get PDF
    The paper deals with the study of labor market dynamics, and aims to characterize its equilibriums and possible trajectories. The theoretical background is the theory of the segmented labor market. The main idea is that this theory is well adapted to interpret the observed trajectories, due to the heterogeneity of the work situations.Comment: accepted to the WSOM 2007 Conference (Bielefield

    Dynamical Equilibrium, trajectories study in an economical system. The case of the labor market.

    Get PDF
    The paper deals with the study of labor market dynamics, and aims to characterize its equilibriums and possible trajectories. The theoretical background is the theory of the segmented labor market. The main idea is that this theory is well adapted to interpret the observed trajectories, due to the heterogeneity of the work situations.Segmented labor market; Kohonen maps; trajectories

    A CONCEPTUAL ANALYSIS OF THE RELATIONSHIP BETWEEN THE PERSONAL IDENTITY AND THE CHANGES OF THE BRAIN

    Get PDF
    [This essay aims to show that philosophy-hence also ethics-and neuroscience are dependent on each other. To make this visible, is to investigate the relationship between the personal identity and the changes of the brain. While the personal identity still owes its scientific resonance of philosophy, the brain is one of the entities that neuroscience is responsible to analyze in the first place. These three perspectives have to be taken into account: mereological, hermeneutic, and concrete.

    Self Organizing Map algorithm and distortion measure

    No full text
    International audienceWe study the statistical meaning of the minimization of distortion measure and the relation between the equilibrium points of the SOM algorithm and the minima of distortion measure. If we assume that the observations and the map lie in an compact Euclidean space, we prove the strong consistency of the map which almost minimizes the empirical distortion. Moreover, after calculating the derivatives of the theoretical distortion measure, we show that the points minimizing this measure and the equilibria of the Kohonen map do not match in general. We illustrate, with a simple example, how this occurs
    corecore