4,015 research outputs found

    False Vacuum in the Supersymmetric Mass Varying Neutrinos Model

    Full text link
    We present detailed analyses of the vacuum structure of the scalar potential in a supersymmetric Mass Varying Neutrinos model. The observed dark energy density is identified with false vacuum energy and the dark energy scale of order (103eV)4(10^{-3}eV)^4 is understood by gravitationally suppressed supersymmetry breaking scale, F(TeV)2/MPlF({TeV})^2/M_{Pl}, in the model. The vacuum expectation values of sneutrinos should be tiny in order that the model works. Some decay processes of superparticles into acceleron and sterile neutrino are also discussed in the model.Comment: 7 pages, 5 figures, revtex, typos correcte

    Analysis of an experimental quantum logic gate by complementary classical operations

    Get PDF
    Quantum logic gates can perform calculations much more efficiently than their classical counterparts. However, the level of control needed to obtain a reliable quantum operation is correspondingly higher. In order to evaluate the performance of experimental quantum gates, it is therefore necessary to identify the essential features that indicate quantum coherent operation. In this paper, we show that an efficient characterization of an experimental device can be obtained by investigating the classical logic operations on a pair of complementary basis sets. It is then possible to obtain reliable predictions about the quantum coherent operations of the gate such as entanglement generation and Bell state discrimination even without performing these operations directly.Comment: 14 pages, 1 figure, 3 tables, Brief Review for Modern Physics Letters A, includes a more detailed analysis of the experimental data in Phys. Rev. Lett. 95, 210506 (2005) (quant-ph/0506263). v2 has minor corrections in layou

    Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection

    Get PDF
    We propose efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. By these phase encodings, the probability of basis mismatch is reduced and total efficiency is increased. We also propose mixed-state protocols by omitting a part of classical communication steps in the efficient-phase-encoding protocols. The omission implies a reduction of information to an eavesdropper and possibly enhances the security of the protocols. We investigate the security of the protocols against individual beam splitting attack.Comment: RevTeX4, 8 pages, 9 figure

    Entanglement Spectra of the quantum hard-square model: Holographic minimal models

    Full text link
    We study the entanglement properties of a quantum lattice-gas model for which we can find the exact ground state (of the Rokhsar-Kivelson type). The ground state can be expressed as a superposition of states, each of which is characterized by a particle configuration with nearest-neighbor exclusion. We show that the reduced density matrix of the model on a ladder is intimately related to the transfer matrix of the classical hard-square model. The entanglement spectra of the model on square and triangular ladders are critical when parameters are chosen so that the corresponding classical hard-square models are critical. A detailed analysis reveals that the critical theories for the entanglement Hamiltonians are c<1c<1 minimal conformal field theories. We further show that the entanglement Hamiltonian for the triangular ladder is integrable despite the fact that the original quantum lattice-gas model is non-integrable.Comment: 10 pages, 8 figure

    Low Energy Theorem for SUSY Breaking with Gauge Supermultiplets

    Full text link
    Low energy theorems of Nambu-Goldstone fermion associated with spontaneously broken supersymmetry are studied for gauge supermultiplets. Two possible terms in the effective Lagrangian are needed to deal with massless gaugino and/or massless gauge boson. As an illustrative example, a concrete model is worked out which can interpolate massless as well as massive gaugino and/or gauge boson to examine the low energy effective interaction of NG-fermion.Comment: 14page

    Non-Stationary Dark Energy Around a Black Hole

    Full text link
    Numerical simulations of the accretion of test scalar fields with non-standard kinetic terms (of the k-essence type) onto a Schwarzschild black hole are performed. We find a full dynamical solution for the spherical accretion of a Dirac-Born-Infeld type scalar field. The simulations show that the accretion eventually settles down to a well known stationary solution. This particular analytical steady state solution maintains two separate horizons. The standard horizon is for the usual particles propagating with the limiting speed of light, while the other sonic horizon is for the k-essence perturbations propagating with the speed of sound around this accreting background. For the case where the k-essence perturbations propagate superluminally, we show that one can send signals from within a black hole during the approach to the stationary solution. We also find that a ghost condensate model settles down to a stationary solution during the accretion process.Comment: 8 pages, 10 figure

    Selective entanglement breaking

    Get PDF
    We discuss the cases where local decoherence selectively degrades one type of entanglement more than other types. A typical case is called state ordering change, in which two input states with different amounts of entanglement undergoes a local decoherence and the state with the larger entanglement results in an output state with less entanglement than the other output state. We are also interested in a special case where the state with the larger entanglement evolves to a separable state while the other output state is still entangled, which we call selective entanglement breaking. For three-level or larger systems, it is easy to find examples of the state ordering change and the selective entanglement breaking, but for two-level systems it is not trivial whether such situations exist. We present a new strategy to construct examples of two-qubit states exhibiting the selective entanglement breaking regardless of entanglement measure. We also give a more striking example of the selective entanglement breaking in which the less entangled input state has only an infinitesimal amount of entanglement.Comment: 6 pages, 2 figure

    Redshift Dependent Lag-Luminosity Relation in 565 BASTE Gamma Ray Bursts

    Full text link
    We compared redshifts zYz_Y from Yonetoku relation and zlagz_{lag} from the lag-luminosity relation for 565 BASTE GRBs and were surprised to find that the correlation is very low. Assuming that the luminosity is a function of both zYz_Y and the intrinsic spectral lag τlag\tau_{lag}, we found a new redshift dependent lag-luminosity relation as L=7.5×1050erg/s(1+z)2.53τlag0.282L=7.5\times 10^{50}{\rm erg/s}(1+z)^{2.53}\tau_{lag}^{-0.282} with the correlation coefficient of 0.77 and the chance probability of 7.9×10757.9\times 10^{-75}. To check the validity of this method, we examined the other luminosity indicator, Amati relation, using zYz_Y and the observed fluence and found the correlation coefficient of 0.92 and the chance probability of 5.2×101065.2\times 10^{-106}. Although the spectral lag is computed from two channels of BATSE, our new lag-luminosity relation suggests that a possible lag-luminosity relation in the \swift era should also depend on redshift
    corecore