1,021 research outputs found

    Nonperturbative Spectrum of Anomalous Scaling Exponents in the Anisotropic Sectors of Passively Advected Magnetic Fields

    Full text link
    We address the scaling behavior of the covariance of the magnetic field in the three-dimensional kinematic dynamo problem when the boundary conditions and/or the external forcing are not isotropic. The velocity field is gaussian and δ\delta-correlated in time, and its structure function scales with a positive exponent ξ\xi. The covariance of the magnetic field is naturally computed as a sum of contributions proportional to the irreducible representations of the SO(3) symmetry group. The amplitudes are non-universal, determined by boundary conditions. The scaling exponents are universal, forming a discrete, strictly increasing spectrum indexed by the sectors of the symmetry group. When the initial mean magnetic field is zero, no dynamo effect is found, irrespective of the anisotropy of the forcing. The rate of isotropization with decreasing scales is fully understood from these results.Comment: 22 pages, 2 figures. Submitted to PR

    Anisotropic Homogeneous Turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors

    Get PDF
    We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flow. We achieved an homogeneous and anisotropic statistical ensemble by randomly shifting the forcing phases. We observe high intermittency as a function of the order of the velocity correlation within each fixed anisotropic sector and a hierarchical organization of scaling exponents at fixed order of the velocity correlation at changing the anisotropic sector.Comment: 6 pages, 3 eps figure

    Statistics of pressure and of pressure-velocity correlations in isotropic turbulence

    Get PDF
    Some pressure and pressure-velocity correlation in a direct numerical simulations of a three-dimensional turbulent flow at moderate Reynolds numbers have been analyzed. We have identified a set of pressure-velocity correlations which posseses a good scaling behaviour. Such a class of pressure-velocity correlations are determined by looking at the energy-balance across any sub-volume of the flow. According to our analysis, pressure scaling is determined by the dimensional assumption that pressure behaves as a ``velocity squared'', unless finite-Reynolds effects are overwhelming. The SO(3) decompositions of pressure structure functions has also been applied in order to investigate anisotropic effects on the pressure scaling.Comment: 21 pages, 8 figur

    Strong Universality in Forced and Decaying Turbulence

    Full text link
    The weak version of universality in turbulence refers to the independence of the scaling exponents of the nnth order strcuture functions from the statistics of the forcing. The strong version includes universality of the coefficients of the structure functions in the isotropic sector, once normalized by the mean energy flux. We demonstrate that shell models of turbulence exhibit strong universality for both forced and decaying turbulence. The exponents {\em and} the normalized coefficients are time independent in decaying turbulence, forcing independent in forced turbulence, and equal for decaying and forced turbulence. We conjecture that this is also the case for Navier-Stokes turbulence.Comment: RevTex 4, 10 pages, 5 Figures (included), 1 Table; PRE, submitte

    Inhomogeneous Anisotropic Passive Scalars

    Full text link
    We investigate the behaviour of the two-point correlation function in the context of passive scalars for non homogeneous, non isotropic forcing ensembles. Exact analytical computations can be carried out in the framework of the Kraichnan model for each anisotropic sector. It is shown how the homogeneous solution is recovered at separations smaller than an intrinsic typical lengthscale induced by inhomogeneities, and how the different Fourier modes in the centre-of-mass variable recombine themselves to give a ``beating'' (superposition of power laws) described by Bessel functions. The pure power-law behaviour is restored even if the inhomogeneous excitation takes place at very small scales.Comment: 14 pages, 5 figure

    Statistical conservation laws in turbulent transport

    Full text link
    We address the statistical theory of fields that are transported by a turbulent velocity field, both in forced and in unforced (decaying) experiments. We propose that with very few provisos on the transporting velocity field, correlation functions of the transported field in the forced case are dominated by statistically preserved structures. In decaying experiments (without forcing the transported fields) we identify infinitely many statistical constants of the motion, which are obtained by projecting the decaying correlation functions on the statistically preserved functions. We exemplify these ideas and provide numerical evidence using a simple model of turbulent transport. This example is chosen for its lack of Lagrangian structure, to stress the generality of the ideas

    Drag Reduction by Polymers in Turbulent Channel Flows: Energy Redistribution Between Invariant Empirical Modes

    Full text link
    We address the phenomenon of drag reduction by dilute polymeric additive to turbulent flows, using Direct Numerical Simulations (DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag reduction we initiate in this paper an investigation of the most important modes that are sustained in the viscoelastic and Newtonian turbulent flows respectively. The modes are obtained empirically using the Karhunen-Loeve decomposition, allowing us to compare the most energetic modes in the viscoelastic and Newtonian flows. The main finding of the present study is that the spatial profile of the most energetic modes is hardly changed between the two flows. What changes is the energy associated with these modes, and their relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an important clue to the mechanism of drag reduction as is proposed in this paper. In particular there is an enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag reduction is seen in the energy containing modes rather than the dissipative modes as proposed in some previous theories.Comment: 11 pages, 13 figures, included, PRE, submitted, REVTeX

    Completeness of classical spin models and universal quantum computation

    Full text link
    We study mappings between distinct classical spin systems that leave the partition function invariant. As recently shown in [Phys. Rev. Lett. 100, 110501 (2008)], the partition function of the 2D square lattice Ising model in the presence of an inhomogeneous magnetic field, can specialize to the partition function of any Ising system on an arbitrary graph. In this sense the 2D Ising model is said to be "complete". However, in order to obtain the above result, the coupling strengths on the 2D lattice must assume complex values, and thus do not allow for a physical interpretation. Here we show how a complete model with real -and, hence, "physical"- couplings can be obtained if the 3D Ising model is considered. We furthermore show how to map general q-state systems with possibly many-body interactions to the 2D Ising model with complex parameters, and give completeness results for these models with real parameters. We also demonstrate that the computational overhead in these constructions is in all relevant cases polynomial. These results are proved by invoking a recently found cross-connection between statistical mechanics and quantum information theory, where partition functions are expressed as quantum mechanical amplitudes. Within this framework, there exists a natural correspondence between many-body quantum states that allow universal quantum computation via local measurements only, and complete classical spin systems.Comment: 43 pages, 28 figure

    Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence

    Full text link
    The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework of the kinematic approximation, in the presence of a large-scale background magnetic field. The velocity field is Gaussian, δ\delta-correlated in time, and scales with a positive exponent ξ\xi. Explicit inertial-range expressions for the magnetic correlation functions are obtained; they are represented by superpositions of power laws with non-universal amplitudes and universal (independent of the anisotropy and forcing) anomalous exponents. The complete set of anomalous exponents for the pair correlation function is found non-perturbatively, in any space dimension dd, using the zero-mode technique. For higher-order correlation functions, the anomalous exponents are calculated to O(ξ)O(\xi) using the renormalization group. The exponents exhibit a hierarchy related to the degree of anisotropy; the leading contributions to the even correlation functions are given by the exponents from the isotropic shell, in agreement with the idea of restored small-scale isotropy. Conversely, the small-scale anisotropy reveals itself in the odd correlation functions : the skewness factor is slowly decreasing going down to small scales and higher odd dimensionless ratios (hyperskewness etc.) dramatically increase, thus diverging in the r0r\to 0 limit.Comment: 25 pages Latex, 1 Figur

    Quantum geometry and quantum algorithms

    Get PDF
    Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are geometric in nature, we provide a quantum algorithm that efficiently approximates the colored Jones polynomial. The construction is based on the complete solution of Chern-Simons topological quantum field theory and its connection to Wess-Zumino-Witten conformal field theory. The colored Jones polynomial is expressed as the expectation value of the evolution of the q-deformed spin-network quantum automaton. A quantum circuit is constructed capable of simulating the automaton and hence of computing such expectation value. The latter is efficiently approximated using a standard sampling procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The Quantum Universe'' in honor of G. C. Ghirard
    corecore