3,827 research outputs found

    A Full Characterization of Quantum Advice

    Get PDF
    We prove the following surprising result: given any quantum state rho on n qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of two-qubit interactions), such that any ground state of H can be used to simulate rho on all quantum circuits of fixed polynomial size. In terms of complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which supersedes the previous result of Aaronson that BQP/qpoly is contained in PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in power to untrusted quantum advice combined with trusted classical advice. Proving our main result requires combining a large number of previous tools -- including a result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learnability of quantum states, and a result of Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new ones. The main new tool is a so-called majority-certificates lemma, which is closely related to boosting in machine learning, and which seems likely to find independent applications. In its simplest version, this lemma says the following. Given any set S of Boolean functions on n variables, any function f in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm in S, such that each fi is the unique function in S compatible with O(log|S|) input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines needed to be changed to preserve our results. The revised definition is more natural and has the same intuitive interpretation. 2. We needed properties of Local Hamiltonian reductions going beyond those proved in previous works (whose results we'd misstated). We now prove the needed properties. See p. 6 for more on both point

    Unbounded-error One-way Classical and Quantum Communication Complexity

    Full text link
    This paper studies the gap between quantum one-way communication complexity Q(f)Q(f) and its classical counterpart C(f)C(f), under the {\em unbounded-error} setting, i.e., it is enough that the success probability is strictly greater than 1/2. It is proved that for {\em any} (total or partial) Boolean function ff, Q(f)=C(f)/2Q(f)=\lceil C(f)/2 \rceil, i.e., the former is always exactly one half as large as the latter. The result has an application to obtaining (again an exact) bound for the existence of (m,n,p)(m,n,p)-QRAC which is the nn-qubit random access coding that can recover any one of mm original bits with success probability p\geq p. We can prove that (m,n,>1/2)(m,n,>1/2)-QRAC exists if and only if m22n1m\leq 2^{2n}-1. Previously, only the construction of QRAC using one qubit, the existence of (O(n),n,>1/2)(O(n),n,>1/2)-RAC, and the non-existence of (22n,n,>1/2)(2^{2n},n,>1/2)-QRAC were known.Comment: 9 pages. To appear in Proc. ICALP 200

    General framework for quantum search algorithms

    Full text link
    Grover's quantum search algorithm drives a quantum computer from a prepared initial state to a desired final state by using selective transformations of these states. Here, we analyze a framework when one of the selective trasformations is replaced by a more general unitary transformation. Our framework encapsulates several previous generalizations of the Grover's algorithm. We show that the general quantum search algorithm can be improved by controlling the transformations through an ancilla qubit. As a special case of this improvement, we get a faster quantum algorithm for the two-dimensional spatial search.Comment: revised versio

    Can closed timelike curves or nonlinear quantum mechanics improve quantum state discrimination or help solve hard problems?

    Full text link
    We study the power of closed timelike curves (CTCs) and other nonlinear extensions of quantum mechanics for distinguishing nonorthogonal states and speeding up hard computations. If a CTC-assisted computer is presented with a labeled mixture of states to be distinguished--the most natural formulation--we show that the CTC is of no use. The apparent contradiction with recent claims that CTC-assisted computers can perfectly distinguish nonorthogonal states is resolved by noting that CTC-assisted evolution is nonlinear, so the output of such a computer on a mixture of inputs is not a convex combination of its output on the mixture's pure components. Similarly, it is not clear that CTC assistance or nonlinear evolution help solve hard problems if computation is defined as we recommend, as correctly evaluating a function on a labeled mixture of orthogonal inputs.Comment: 4 pages, 3 figures. Final version. Added several references, updated discussion and introduction. Figure 1(b) very much enhance

    Decoherence in Quantum Walks on the Hypercube

    Full text link
    We study a natural notion of decoherence on quantum random walks over the hypercube. We prove that in this model there is a decoherence threshold beneath which the essential properties of the hypercubic quantum walk, such as linear mixing times, are preserved. Beyond the threshold, we prove that the walks behave like their classical counterparts.Comment: 7 pages, 3 figures; v2:corrected typos in references; v3:clarified section 2.1; v4:added references, expanded introduction; v5: final journal versio

    Geometries for universal quantum computation with matchgates

    Full text link
    Matchgates are a group of two-qubit gates associated with free fermions. They are classically simulatable if restricted to act between nearest neighbors on a one-dimensional chain, but become universal for quantum computation with longer-range interactions. We describe various alternative geometries with nearest-neighbor interactions that result in universal quantum computation with matchgates only, including subtle departures from the chain. Our results pave the way for new quantum computer architectures that rely solely on the simple interactions associated with matchgates.Comment: 6 pages, 4 figures. Updated version includes an appendix extending one of the result

    Computation with narrow CTCs

    Full text link
    We examine some variants of computation with closed timelike curves (CTCs), where various restrictions are imposed on the memory of the computer, and the information carrying capacity and range of the CTC. We give full characterizations of the classes of languages recognized by polynomial time probabilistic and quantum computers that can send a single classical bit to their own past. Such narrow CTCs are demonstrated to add the power of limited nondeterminism to deterministic computers, and lead to exponential speedup in constant-space probabilistic and quantum computation. We show that, given a time machine with constant negative delay, one can implement CTC-based computations without the need to know about the runtime beforehand.Comment: 16 pages. A few typo was correcte

    On Hausdorff dimension of the set of closed orbits for a cylindrical transformation

    Full text link
    We deal with Besicovitch's problem of existence of discrete orbits for transitive cylindrical transformations Tφ:(x,t)(x+α,t+φ(x))T_\varphi:(x,t)\mapsto(x+\alpha,t+\varphi(x)) where Tx=x+αTx=x+\alpha is an irrational rotation on the circle \T and \varphi:\T\to\R is continuous, i.e.\ we try to estimate how big can be the set D(\alpha,\varphi):=\{x\in\T:|\varphi^{(n)}(x)|\to+\infty\text{as}|n|\to+\infty\}. We show that for almost every α\alpha there exists φ\varphi such that the Hausdorff dimension of D(α,φ)D(\alpha,\varphi) is at least 1/21/2. We also provide a Diophantine condition on α\alpha that guarantees the existence of φ\varphi such that the dimension of D(α,φ)D(\alpha,\varphi) is positive. Finally, for some multidimensional rotations TT on \T^d, d3d\geq3, we construct smooth φ\varphi so that the Hausdorff dimension of D(α,φ)D(\alpha,\varphi) is positive.Comment: 32 pages, 1 figur

    Spatial search and the Dirac equation

    Full text link
    We consider the problem of searching a d-dimensional lattice of N sites for a single marked location. We present a Hamiltonian that solves this problem in time of order sqrt(N) for d>2 and of order sqrt(N) log(N) in the critical dimension d=2. This improves upon the performance of our previous quantum walk search algorithm (which has a critical dimension of d=4), and matches the performance of a corresponding discrete-time quantum walk algorithm. The improvement uses a lattice version of the Dirac Hamiltonian, and thus requires the introduction of spin (or coin) degrees of freedom.Comment: 5 pages, 1 figur

    Quantum walk approach to search on fractal structures

    Full text link
    We study continuous-time quantum walks mimicking the quantum search based on Grover's procedure. This allows us to consider structures, that is, databases, with arbitrary topological arrangements of their entries. We show that the topological structure of the database plays a crucial role by analyzing, both analytically and numerically, the transition from the ground to the first excited state of the Hamiltonian associated with different (fractal) structures. Additionally, we use the probability of successfully finding a specific target as another indicator of the importance of the topological structure.Comment: 15 pages, 14 figure
    corecore