174,004 research outputs found
Parametric design study - Recuperator development program, solar Brayton cycle system
Heat exchangers for recuperator in closed Brayton cycle space power system using solar energy and argo
V/STOL maneuverability and control
Maneuverability and control of V/STOL aircraft in powered-lift flight is studied with specific considerations of maneuvering in forward flight. A review of maneuverability for representative operational mission tasks is presented and covers takeoff, transition, hover, and landing flight phases. Maneuverability is described in terms of the ability to rotate and translate the aircraft and is specified in terms of angular and translational accelerations imposed on the aircraft. Characteristics of representative configurations are reviewed, including experience from past programs and expectations for future designs. The review of control covers the characteristics inherent in the basic airframe and propulsion system and the behavior associated with ontrol augmentation systems. Demands for augmented stability and control response to meet certain mission operational requirements are discussed. Experience from ground-based simulation and flight experiments that illustrates the impact of augmented stability and control on aircraft design is related by example
New Symbolic Tools for Differential Geometry, Gravitation, and Field Theory
DifferentialGeometry is a Maple software package which symbolically performs
fundamental operations of calculus on manifolds, differential geometry, tensor
calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the
variational calculus. These capabilities, combined with dramatic recent
improvements in symbolic approaches to solving algebraic and differential
equations, have allowed for development of powerful new tools for solving
research problems in gravitation and field theory. The purpose of this paper is
to describe some of these new tools and present some advanced applications
involving: Killing vector fields and isometry groups, Killing tensors and other
tensorial invariants, algebraic classification of curvature, and symmetry
reduction of field equations.Comment: 42 page
A study to examine the feasibility of using surface penetrators for mineral exploration
The feasibility of using penetrators in earth applications is examined. Penetrator applications in exploration for mineral resources only is summarized. Instrumentation for future penetrators is described. Portions of this report are incorporated into a more extensive report examining other penetrator applications in exploration for fossil fuels, geothermal resources, and in environmental and engineering problems, which is to be published as a NASA technical publication
Development and validation of 'AutoRIF': Software for the automated analysis of radiation-induced foci
Copyright @ 2012 McVean et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: The quantification of radiation-induced foci (RIF) to investigate the induction and subsequent repair of DNA double strands breaks is now commonplace. Over the last decade systems specific for the automatic quantification of RIF have been developed for this purpose, however to ask more mechanistic questions on the spatio-temporal aspects of RIF, an automated RIF analysis platform that also quantifies RIF size/volume and relative three-dimensional (3D) distribution of RIF within individual nuclei, is required.
Results: A java-based image analysis system has been developed (AutoRIF) that quantifies the number, size/volume and relative nuclear locations of RIF within 3D nuclear volumes. Our approach identifies nuclei using the dynamic Otsu threshold and RIF by enhanced Laplacian filtering and maximum entropy thresholding steps and, has an application ‘batch optimisation’ process to ensure reproducible quantification of RIF. AutoRIF was validated by comparing output against manual quantification of the same 2D and 3D image stacks with results showing excellent concordance over a whole range of sample time points (and therefore range of total RIF/nucleus) after low-LET radiation exposure.
Conclusions: This high-throughput automated RIF analysis system generates data with greater depth of information and reproducibility than that which can be achieved manually and may contribute toward the standardisation of RIF analysis. In particular, AutoRIF is a powerful tool for studying spatio-temporal relationships of RIF using a range of DNA damage response markers and can be run independently of other software, enabling most personal computers to perform image analysis. Future considerations for AutoRIF will likely include more complex algorithms that enable multiplex analysis for increasing combinations of cellular markers.This article is made available through the Brunel Open Access Publishing Fund
Evaluation of a high performance, fixed-ratio, traction drive
A test program was initiated to evaluate the key operational and performance factors associated with the Nasvytis multiroller concept. Two sets of Nasvytis drives, each of slightly geometry, were parametrically tested on a back to back test stand. Initial results from these tests are reported. One of these units was later retrofitted to the power turbine of an automotive gas turbine engine and dynamometer tested
Gravitational waveforms from the evaporating ACO cosmic string loop
The linearly polarized gravitational waveforms from a certain type of
rotating, evaporating cosmic string - the Allen-Casper-Ottewill loop - are
constructed and plotted over the lifetime of the loop. The formulas for the
waveforms are simple and exact, and describe waves which attenuate
self-similarly, with the amplitude and period of the waves falling off linearly
with time.Comment: 30 pages, 16 figure
CO adsorption on (111) and (100) surfaces of the Pt sub 3 Ti alloy. Evidence for parallel binding and strong activation of CO
The CO adsorption on a 40 atom cluster model of the (111) surface and a 36 atom cluster model of the (100) surface of the Pt3Ti alloy was studied. Parallel binding to high coordinate sites associated with Ti and low CO bond scission barriers are predicted for both surfaces. The binding of CO to Pt sites occurs in an upright orientation. These orientations are a consequence of the nature of the CO pi donation interactions with the surface. On the Ti sites the orbitals donate to the nearly empty Ti 3d band and the antibonding counterpart orbitals are empty. On the Pt sites, however, they are in the filled Pt 5d region of the alloy band, which causes CO to bond in a vertical orientation by 5 delta donation from the carbon end
Does Community and Environmental Responsibility Affect Firm Risk? Evidence from UK Panel Data 1994-2006
The question of how an individual firm’s environmental performance impacts its firm risk has not been examined in any empirical UK research. Does a company that strives to attain good environmental performance decreases its market risk or is environmental performance just a disadvantageous cost that increases such risk levels for these firms? Answers to this question have important implications for the management of companies and the investment decisions of individuals and institutions. The purpose of this paper is to examine the relationship between corporate environmental performance and firm risk in the British context. Using the largest dataset so far assembled, with Community and Environmental Responsibility (CER) rankings for all rated UK companies between 1994 and 2006, we show that a company’s environmental performance is inversely related to its systematic financial risk. However, an increase of 1.0 in the CER score is associated with only a 0.02 reduction in firm’s risk and cost of capital
Studying resist stochastics with the multivariate poisson propagation model
Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits
- …
