6,112 research outputs found
PRESENCE AND PREVALENCE OF BD (BATRACHOCHYTRIUM DENDROBATIDIS) IN CENTRAL PENNSYLVANIAN WOODLAND VERNAL POOLS
Batrachochytrium dendrobatidis (Bd), a virulent chytrid fungus responsible for dramatic amphibian declines, has been detected in the northwestern and southeastern regions of Pennsylvania. However, little environmental Bd testing has been performed in central Pennsylvania, particularly in the unique and speciose habitats of woodland vernal pools. Our study included sampling in four vernal pools over a period of three months during amphibian breeding periods. Skin swabs were taken from three caudate and two anuran species, during the course of late winter and spring migrations (n = 143). Low Bd zoospore equivalent loads were detected in only a few individuals, in three of the five species but in all four vernal pools sampled. No significant trends were seen between zoospore loads and ambient temperature or migration timing across the species sampled
Evolution of Protoneutron Stars
We study the thermal and chemical evolution during the Kelvin-Helmholtz phase
of the birth of a neutron star, employing neutrino opacities that are
consistently calculated with the underlying equation of state (EOS).
Expressions for the diffusion coefficients appropriate for general relativistic
neutrino transport in the equilibrium diffusion approximation are derived. The
diffusion coefficients are evaluated using a field-theoretical finite
temperature EOS that includes the possible presence of hyperons. The variation
of the diffusion coefficients is studied as a function of EOS and compositional
parameters. We present results from numerical simulations of protoneutron star
cooling for internal stellar properties as well as emitted neutrino energies
and luminosities. We discuss the influence of the initial stellar model, the
total mass, the underlying EOS, and the addition of hyperons on the evolution
of the protoneutron star and upon the expected signal in terrestrial detectors.Comment: 67 pages, 25 figure
Lattice Universes in 2+1-dimensional gravity
Lattice universes are spatially closed space-times of spherical topology in
the large, containing masses or black holes arranged in the symmetry of a
regular polygon or polytope. Exact solutions for such spacetimes are found in
2+1 dimensions for Einstein gravity with a non-positive cosmological constant.
By means of a mapping that preserves the essential nature of geodesics we
establish analogies between the flat and the negative curvature cases. This map
also allows treatment of point particles and black holes on a similar footing.Comment: 14 pages 7 figures, to appear in Festschrift for Vince Moncrief (CQG
Gravitational collapse to toroidal, cylindrical and planar black holes
Gravitational collapse of non-spherical symmetric matter leads inevitably to
non-static external spacetimes. It is shown here that gravitational collapse of
matter with toroidal topology in a toroidal anti-de Sitter background proceeds
to form a toroidal black hole. According to the analytical model presented, the
collapsing matter absorbs energy in the form of radiation (be it scalar,
neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon
decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black
membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation
of some results, to appear in Physical Review
Capture Velocity for a Magneto-Optical Trap in a Broad Range of Light Intensity
In a recent paper, we have used the dark-spot Zeeman tuned slowing technique
[Phys. Rev. A 62, 013404-1, (2000)] to measure the capture velocity as a
function of laser intensity for a sodium magneto optical trap. Due to technical
limitation we explored only the low light intensity regime, from 0 to 27
mW/cm^2. Now we complement that work measuring the capture velocity in a
broader range of light intensities (from 0 to 400 mW/cm^2). New features,
observed in this range, are important to understant the escape velocity
behavior, which has been intensively used in the interpretation of cold
collisions. In particular, we show in this brief report that the capture
velocity has a maximum as function of the trap laser intensity, which would
imply a minimum in the trap loss rates.Comment: 2 pages, 2 figure
Inference with interference between units in an fMRI experiment of motor inhibition
An experimental unit is an opportunity to randomly apply or withhold a
treatment. There is interference between units if the application of the
treatment to one unit may also affect other units. In cognitive neuroscience, a
common form of experiment presents a sequence of stimuli or requests for
cognitive activity at random to each experimental subject and measures
biological aspects of brain activity that follow these requests. Each subject
is then many experimental units, and interference between units within an
experimental subject is likely, in part because the stimuli follow one another
quickly and in part because human subjects learn or become experienced or
primed or bored as the experiment proceeds. We use a recent fMRI experiment
concerned with the inhibition of motor activity to illustrate and further
develop recently proposed methodology for inference in the presence of
interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at
http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package
cin (Causal Inference for Neuroscience) implementing the proposed method is
freely available on CRAN at https://CRAN.R-project.org/package=ci
Atomic density and temperature distributions in magneto-optical traps
A theoretical investigation into density, pressure, and temperature distributions in magneto-optical traps is presented. After a brief overview of the forces that arise from reradiation and absorption, a condition that the absorptive force be conservative is used to show that, if the temperature is uniform throughout the trap, any. density solutions to the force equations will not be physical. Further, consistent density solutions are unlikely to exist at all. In contrast, with a varying temperature reasonable solutions are demonstrated, with some restrictions. Doppler forces involved in ring-shaped trap structures are used to calculate orbit radii in racetrack geometry traps, and corrections to the present discrepancy between theoretical and experimental studies are discussed in the context of reradiation and diffusion
Head-on collision of unequal mass black holes: close-limit predictions
The close-limit method has given approximations in excellent agreement with
those of numerical relativity for collisions of equal mass black holes. We
consider here colliding holes with unequal mass, for which numerical relativity
results are not available. We try to ask two questions: (i) Can we get
approximate answers to astrophysical questions (ideal mass ratio for energy
production, maximum recoil velocity, etc.), and (ii) can we better understand
the limitations of approximation methods. There is some success in answering
the first type of question, but more with the second, especially in connection
with the issue of measures of the intrinsic mass of the colliding holes, and of
the range of validity of the method.Comment: 19 pages, RevTeX + 9 postscript figure
Alumina and Synthesis Intermediates Derived from Diethylkaluminum Amide, Benzaldehyde and Water
The reaction of diethylaluminum amide [Et2AINH2] with benzaldehyde in toluene produces a solution of ethylaluminoxane polymer [EtAlO] and hydrobenzamide [PhCH=NCH(Ph)N=CHPh]. Alumina then is precipitated by the addition of water. Transition aluminas that may be useful in heterogeneous catalyst applications are obtained after calcining. Details of the chemistry of solution intermediates according to 1H NMR and the properties of the alumina product according to surface area analyses and powder x-ray diffraction are described
- …
