52,098 research outputs found

    The tangent splash in \PG(6,q)

    Full text link
    Let B be a subplane of PG(2,q^3) of order q that is tangent to \ell_\infty. Then the tangent splash of B is defined to be the set of q^2+1 points of \ell_\infty that lie on a line of B. In the Bruck-Bose representation of PG(2,q^3) in PG(6,q), we investigate the interaction between the ruled surface corresponding to B and the planes corresponding to the tangent splash of B. We then give a geometric construction of the unique order-qq-subplane determined by a given tangent splash and a fixed order-qq-subline.Comment: arXiv admin note: substantial text overlap with arXiv:1303.550

    Exterior splashes and linear sets of rank 3

    Full text link
    In \PG(2,q^3), let π\pi be a subplane of order qq that is exterior to \li. The exterior splash of π\pi is defined to be the set of q2+q+1q^2+q+1 points on \li that lie on a line of π\pi. This article investigates properties of an exterior \orsp\ and its exterior splash. We show that the following objects are projectively equivalent: exterior splashes, covers of the circle geometry CG(3,q)CG(3,q), Sherk surfaces of size q2+q+1q^2+q+1, and \GF(q)-linear sets of rank 3 and size q2+q+1q^2+q+1. We compare our construction of exterior splashes with the projection construction of a linear set. We give a geometric construction of the two different families of sublines in an exterior splash, and compare them to the known families of sublines in a scattered linear set of rank 3

    Karhunen-Lo\`eve expansion for a generalization of Wiener bridge

    Get PDF
    We derive a Karhunen-Lo\`eve expansion of the Gauss process Btg(t)01g(u)dBuB_t - g(t)\int_0^1 g'(u)\,d B_u, t[0,1]t\in[0,1], where (Bt)t[0,1](B_t)_{t\in[0,1]} is a standard Wiener process and g:[0,1]Rg:[0,1]\to R is a twice continuously differentiable function with g(0)=0g(0) = 0 and 01(g(u))2du=1\int_0^1 (g'(u))^2\,d u =1. This process is an important limit process in the theory of goodness-of-fit tests. We formulate two special cases with the function g(t)=2πsin(πt)g(t)=\frac{\sqrt{2}}{\pi}\sin(\pi t), t[0,1]t\in[0,1], and g(t)=tg(t)=t, t[0,1]t\in[0,1], respectively. The latter one corresponds to the Wiener bridge over [0,1][0,1] from 00 to 00.Comment: 25 pages, 1 figure. The appendix is extende
    corecore