29,145 research outputs found
Recommended from our members
Finite element modelling of electrostatic fields in process tomography capacitive electrode systems for flow response evaluation
Various aspects and results of 2-D finite element (FE) modeling of electrostatic fields in 12-electrode capacitive systems for two-phase flow imaging are described. The capacitive technique relies on changes in capacitances between electrodes (mounted on the outer surface of the flow pipe) due to the change in permittivities of flow components. The measured capacitances between various electrode pairs and the field computation data are used to reconstruct the cross sectional image of the flow components. FE modeling of the electric field is necessary to optimize design variables and evaluate the system response to various flow regimes, likely to be encountered in practice. Results are presented in terms of normalized capacitances for various flow regimes. The effects of key geometric parameters of the electrode system are presented and analyzed
Recommended from our members
Validation of Finite Element Modelling of Multielectrode Capacitive System for Process Tomography Flow Imaging
Finite element modelling of process tomography sensor systems is necessary for their CAD both for performance evaluation and design optimization. This paper involves the validation of finite element models of a 12-electrode capacitive sensor system for multiphase flow imaging. Various results of modelling have been compared in the form of standing mode capacitances and sensor sensitivity distribution with experimental data obtained from UMIST. There is good agreement between simulation results and experiments especially for high sensitivity regions inside the pipe
Finite Element Simulation of a Steady-State Stress Distribution in a Four Stroke Compressed Natural Gas-Direct Injection Engine Cylinder Head
The main aim of this work is to predict the design performance based on the stress/strain and thermal stress behaviour of cylinder head under various operating conditions. The effects of engine operating conditions such as combustion gas temperature and maximum internal pressure, components initial temperature and engine speed on the stress and thermal stress behaviour of the cylinder head have been analyzed. The analysis was carried out using a finite element analysis (FEA) software package, MSC.NASTRAN which is use to simulate and predict the von-Mises stress and strain pattern and thermal distribution of the cylinder head structure during the combustion process in the engine and the geometry modelling was carried out using a popular computeraided engineering tool, CATIA V5. The result can be used to determine the quality of the design as well as identify areas which require further improvement. In this investigation, structural analyses of the cylinder head highlight several areas of interest. The maximum stress is found not exceeding the material strength of cylinder head, and thus the basic design criteria, namely no yielding and no structural failure under firing load case, can be satisfied. In addition, the effect of thermal stress/strain provides a good indication on structural integrity and reliability of the cylinder head, which can be improved in the early stages of design. This steadystate finite element method (FEM) stress analysis can play a very effective role in the rapid prototyping of the cylinder head
Green tea polyphenol-reduced graphene oxide: derivatisation, reduction efficiency, reduction mechanism and cytotoxicity
This paper reports on the derivatisation, reduction efficiency, reduction mechanism and cytotoxicity of green tea polyphenol-reduced graphene oxide (GTP-RGO). The reduction of graphene oxide (GO) at 90°C using a weight ratio (WR) of GTP/GO=1 resulted in the production of a stable GTP-RGO dispersion in aqueous media, as indicated by the results of ultravioletvisible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and the measurement of zeta potential and electrophoretic mobility. In addition, the results from UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis indicated the comparable reduction ability of GTP relative to the standard reducing agent, hydrazine (N2H4). The removal mechanism of epoxy group from GO via reduction reaction with GTP was investigated by implementing hybrid functional method of Becke-3-parameters-Lee-Yang-Parr (B3LYP)using Gaussian 09 software. The energy and frequency calculations showed that the GO reduction using GTP was more spontaneous and relatively took place faster than the reduction using N2H4, as evidenced by higher entropy change (ΔS) (0.039 kcal/mol·K) and lower Gibbs free energy (ΔG) barrier (58.880 kcal/mol).The cytotoxicities of GO and GTP-RGO samples were evaluated against human colonic fibroblasts cells (CCD-18Co). The GO sample was determined to be toxic even at low concentration (6.25 μg/mL), while the GTP-RGO sample possesses notably low toxicity at the same concentration. The cell culture experiments revealed that the incorporation of GTP led to a decrease in the toxicity of GTP-RGO samples
Catastrophic forgetting: still a problem for DNNs
We investigate the performance of DNNs when trained on class-incremental
visual problems consisting of initial training, followed by retraining with
added visual classes. Catastrophic forgetting (CF) behavior is measured using a
new evaluation procedure that aims at an application-oriented view of
incremental learning. In particular, it imposes that model selection must be
performed on the initial dataset alone, as well as demanding that retraining
control be performed only using the retraining dataset, as initial dataset is
usually too large to be kept. Experiments are conducted on class-incremental
problems derived from MNIST, using a variety of different DNN models, some of
them recently proposed to avoid catastrophic forgetting. When comparing our new
evaluation procedure to previous approaches for assessing CF, we find their
findings are completely negated, and that none of the tested methods can avoid
CF in all experiments. This stresses the importance of a realistic empirical
measurement procedure for catastrophic forgetting, and the need for further
research in incremental learning for DNNs.Comment: 10 pages, 11 figures, Artificial Neural Networks and Machine Learning
- ICANN 201
Bump extraction algorithm for variable amplitude fatigue loading
This paper presents the development of a fatigue mission synthesis algorithm, called Wavelet Bump Extraction (WBE), for summarising long records of fatigue road load data. This algorithm is used to extract fatigue damaging events or bumps in the record that cause the majority of the fatigue damage, whilst preserving the load cycle sequences. Bumps are identified from characteristic frequency bands in the load spectrum using the 12th order Daubechies wavelet. The bumps are combined to produce a mission signal which has equivalent signal statistics and fatigue damage to the original signal. The WBE accuracy has been evaluated by observing the cycle sequence effects of the bump loadings. The WBE was compared with the time domain fatigue data editing method, so that the effectiveness of WBE can be verified. Using WBE, a substantial compression of the load-time history could be achieved for the purpose of accelerated fatigue tests in the automotive industry
An experimental validation of the fatigue damaging events extracted using the wavelet bump extraction (WBE) algorithm
This paper describes an experimental validation of the fatigue damaging events that were identified and
extracted using a wavelet-based fatigue data editing technique. This technique, known as the Wavelet Bump
Extraction (WBE) algorithm, is specifically designed to summarise a long record of fatigue variable amplitude
(VA) loading whilst preserving the original load cycle sequence. Using WBE the fatigue damaging events were
identified and extracted in order to produce a mission signal. In order to validate the effectiveness of WBE in
practical applications a VA road load time history that was measured on a road vehicle suspension arm was
taken as a case study. Uniaxial fatigue tests were performed using the original signal, the WBE mission signal
and the individual WBE extracted segments. A mirror polished specimen of SAE 1042 steel was tested using a
servo-hydraulic machine. The fatigue lives measured for these VA loadings were then compared to the fatigue
lives calculated from a VA strain loading fatigue damage model. The results show a good fatigue life
correlation at the coefficient of 0.98 between the prediction and experiment. For the road load time history
considered, the WBE mission signal was found to be only 40% the time duration of the original time history
while maintaining 60% of the fatigue damage according to analytical calculation and 87% according to experimental testing
Cholesterol and Malondialdehyde Contents of Broiler-Chicken Meat Supplemented with Indigofera Zolingeriana Top Leaf Meal
This research aimed to increase functional value of broiler-chicken meat containing high antioxidant and low cholesterol through substitution of soybean meal (SBM) with Indigofera zollingeriana top leaf meal (ILM). The experiment used 160 day old broiler chicken (Cobb strain). The experimental chicken were provided dietary treatments when they were 15-days old (initial body weight of 460.5±1.56 g/bird) and terminated on day 35. A completely randomized design (CRD) with four treatments and four replications and ten birds in each replication was used in this experiment. Dietary treatments were: R1= diet containing 20% soybean meal (SBM) without I. zollingeriana top leaf meal (ILM); R2= diet containing 16% SBM and 5.9% ILM; R3= diet containing 12% SBM and 11.8% ILM; R4= diet containing 8% SBM and 17.74% ILM. Variables measured were performances (feed consumption, body weight gain, and feed conversion) and the quality of broiler meat (cholesterol, fat content, and malondialdehyde [MDA] concentration). The results showed that supplementation of 17.74% ILM (R4) as the substitution of 60% soybean meal protein produced the same performances of broilers as those of control diet (R1). Supplementation of 11.8% ILM as the substitution of 40% soybean meal protein (R3) decreased meat cholesterol by 34.70%, meat fat content by 52.93%, and MDA concentration by 62.52%. The conclusion of this study was that supplementation of 17.74% ILM produced the same performances as that of control diet, increased antioxidant content of the meat, indicated by a lower MDA concentration, and decreased cholesterol, as well as fat content of broiler-chicken meat
- …
