651 research outputs found
A Sensitive Faraday Rotation Setup Using Triple Modulation
The utilization of polarized targets in scattering experiments has become a
common practice in many major accelerator laboratories. Noble gases are
especially suitable for such applications, since they can be easily
hyper-polarized using spin exchange or metastable pumping techniques. Polarized
helium-3 is a very popular target because it often serves as an effective
polarized neutron due to its simple nuclear structure. A favorite cell material
to generate and store polarized helium-3 is GE-180, a relatively dense
aluminosilicate glass. In this paper, we present a Faraday rotation method,
using a new triple modulation technique, where the measurement of the Verdet
constants of SF57 flint glass, pyrex glass, and air were tested. The
sensitivity obtained shows that this technique may be implemented in future
cell wall characterization and thickness measurements. We also discuss the
first ever extraction of the Verdet constant of GE-180 glass for four
wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the
expected 1/{\lambda}^{2} dependence was observed.Comment: 4 pages, 2 figures Updated version for RSI submissio
A Survey of Southern Illinois Aquatic Vascular Plants
Author Institution: Southern Illinois University, Carbondal
From treebank resources to LFG F-structures
We present two methods for automatically annotating treebank resources with functional structures. Both methods define systematic patterns of correspondence between partial PS configurations and functional structures. These are applied to PS rules extracted from treebanks, or directly to constraint set encodings of treebank PS trees
Carbon Dioxide Reduction Technology Trade Study
For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system analysis and comparison among the technologies was made based on ESM, technology readiness level and reliability. Those technologies with potential were recommended for development
Bubble Growth as a Detonation
Bubble growth as a detonation is studied in the context of cosmological phase
transitions. It is proved that the so called Chapman-Jouguet hypothesis, which
restricts the types of detonations that can occur in spherically symmetric
chemical burning, does not hold in the case of phase transitions. Therefore a
much larger class of detonation solutions exists in phase transitions than in
chemical burning.Comment: 15 LaTeX-pages with 5 ps-figures appended at the end, preprint
HU-TFT-93-4
The Concept and Analytical Investigation of CO2 and Steam Co-Electrolysis for Resource Utilization in Space Exploration
CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented
Annotating patient clinical records with syntactic chunks and named entities: the Harvey corpus
The free text notes typed by physicians during patient consultations contain valuable information for the study of disease and treatment. These notes are difficult to process by existing natural language analysis tools since they are highly telegraphic (omitting many words), and contain many spelling mistakes, inconsistencies in punctuation, and non-standard word order. To support information extraction and classification tasks over such text, we describe a de-identified corpus of free text notes, a shallow syntactic and named entity annotation scheme for this kind of text, and an approach to training domain specialists with no linguistic background to annotate the text. Finally, we present a statistical chunking system for such clinical text with a stable learning rate and good accuracy, indicating that the manual annotation is consistent and that the annotation scheme is tractable for machine learning
Fluctuations and Bubble Dynamics in First-Order Phase Transitions
We numerically examine the effect of thermal fluctuations on a first-order
phase transition in 2+1 dimensions. By focusing on the expansion of a single
bubble we are able to calculate changes in the bubble wall's velocity as well
as changes in its structure relative to the standard case where the bubble
expands into a homogeneous background. Not only does the wall move faster, but
the transition from the symmetric to the asymmetric phase is no longer smooth,
even for a fairly strong transition. We discuss how these results affect the
standard picture of electroweak baryogenesis.Comment: Latex, 30 pages, 11 ps figures, short discussion added in conclusions
and minor clarifications, accepted to Phys Rev
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, catalyst regeneration, and to scale the carbon formation processing rate of a single reactor
Hydrodynamic Detonation Instability in Electroweak and QCD Phase Transitions
The hydrodynamic stability of deflagration and detonation bubbles for a first
order electroweak and QCD phase transition has been discussed recently with the
suggestion that detonations are stable. We examine here the case of a
detonation more carefully. We find that in front of the bubble wall
perturbations do not grow with time, but behind the wall modes exist which grow
exponentially. We briefly discuss the possible meaning of this instability.Comment: 12 pages, 3 figures available on request, Latex,
FERMILAB--PUB--93/098--
- …
