2,871 research outputs found
Recommended from our members
Premenstrual syndrome and misattribution: A self-perception, individual differences perspective
Embodiment and designing learning environments
There is increasing recognition amongst learning sciences researchers of the critical role that the body plays in thinking and reasoning across contexts and across disciplines. This workshop brings ideas of embodied learning and embodied cognition to the design of instructional environments that engage learners in new ways of moving within, and acting upon, the physical world. Using data and artifacts from participants' research and designs as a starting point, this workshop focuses on strategies for how to effectively leverage embodiment in learning activities in both technology and non-technology environments. Methodologies for studying/assessing the body's role in learning are also addressed
Recommended from our members
Eye-tracking the emergence of attentional anchors in a mathematics learning tablet activity
Little is known about micro-processes by which sensorimotor interaction gives rise to conceptual development. Per embodiment theory, these micro-processes are mediated by dynamical attentional structures. Accordingly this study investigated eye-gaze behaviors during engagement in solving tablet-based bimanual manipulation tasks designed to foster proportional reasoning. Seventy-six elementary- and vocational-school students (9-15 yo) participated in individual task-based clinical interviews. Data gathered included action-logging, eye-tracking, and videography. Analyses revealed the emergence of stable eye-path gaze patterns contemporaneous with first enactments of effective manipulation and prior to verbal articulations of manipulation strategies. Characteristic gaze patterns included consistent or recurring attention to screen locations that bore non-salient stimuli or no stimuli at all yet bore invariant geometric relations to dynamical salient features. Arguably, this research validates empirically hypothetical constructs from constructivism, particularly reflective abstraction
Near-wall, three-dimensional turbulence measurements: A challenge for laser velocimetry
A new laser velocimeter approach is presented, which has distinct advantages in near-wall, two- and three-dimensional turbulence measurement applications. The approach does require placing a probe into the flow; but in return, there are some important benefits, such as, the direct measurement of the crossflow velocity, w, at a grazing incidence, and the ability to size optical components for the scale of the flow rather than the size of the facility. Promising resuls were obtained with this approach for a two-dimensional turbulent boundary layer
Recommended from our members
Situating multimodal learning analytics
The digital age has introduced a host of new challenges and opportunities for the learning sciences community. These challenges and opportunities are particularly abundant in multimodal learning analytics (MMLA), a research methodology that aims to extend work from Educational Data Mining (EDM) and Learning Analytics (LA) to multimodal learning environments by treating multimodal data. Recognizing the short-term opportunities and longterm challenges will help develop proof cases and identify grand challenges that will help propel the field forward. To support the field's growth, we use this paper to describe several ways that MMLA can potentially advance learning sciences research and touch upon key challenges that researchers who utilize MMLA have encountered over the past few years
Recommended from our members
Is Robotic Surgery Highlighting Critical Gaps in Resident Training?
Recommended from our members
Exposing piaget's scheme: Empirical evidence for the ontogenesis of coordination in learning a mathematical concept
The combination of two methodological resources-natural-user interfaces (NUI) and multimodal learning analytics (MMLA)-is creating opportunities for educational researchers to empirically evaluate seminal models for the hypothetical emergence of concepts from situated sensorimotor activity. 76 participants (9-14 yo) solved tablet-based non-symbolic manipulation tasks designed to foster grounded meanings for the mathematical concept of proportional equivalence. Data gathered in task-based semi-structured clinical interviews included action logging, eye-gaze tracking, and videography. Successful task performance coincided with spontaneous appearance of stable dynamical gaze-path patterns soon followed by multimodal articulation of strategy. Significantly, gaze patterns included uncued non-salient screen locations. We present cumulative results to argue that these 'attentional anchors' mediated participants' problem solving. We interpret the findings as enabling us to revisit, support, refine, and elaborate on central claims of Piaget's theory of genetic epistemology and in particular his insistence on the role of situated motor-action coordination in the process of reflective abstraction
Entrainment of randomly coupled oscillator networks by a pacemaker
Entrainment by a pacemaker, representing an element with a higher frequency,
is numerically investigated for several classes of random networks which
consist of identical phase oscillators. We find that the entrainment frequency
window of a network decreases exponentially with its depth, defined as the mean
forward distance of the elements from the pacemaker. Effectively, only shallow
networks can thus exhibit frequency-locking to the pacemaker. The exponential
dependence is also derived analytically as an approximation for large random
asymmetric networks.Comment: 4 pages, 3 figures, revtex 4, submitted to Phys. Rev. Let
Carbon nanotube-guided thermopower waves
Thermopower waves are a new concept for the direct conversion of chemical to electrical energy. A nanowire with large axial thermal diffusivity can accelerate a self-propagating reaction wave using a fuel coated along its length. The reaction wave drives electrical carriers in a thermopower wave, creating a high-power pulse of as much as 7 kW/kg in experiments using carbon nanotubes. We review nanomaterials designed to overcome limitations of thermoelectricity and explore the emerging scientific and practical outlook for devices using thermopower waves
- …
