392 research outputs found

    Properties of Entanglement Monotones for Three-Qubit Pure States

    Get PDF
    Various parameterizations for the orbits under local unitary transformations of three-qubit pure states are analyzed. The interconvertibility, symmetry properties, parameter ranges, calculability and behavior under measurement are looked at. It is shown that the entanglement monotones of any multipartite pure state uniquely determine the orbit of that state under local unitary transformations. It follows that there must be an entanglement monotone for three-qubit pure states which depends on the Kempe invariant defined in [Phys. Rev. A 60, 910 (1999)]. A form for such an entanglement monotone is proposed. A theorem is proved that significantly reduces the number of entanglement monotones that must be looked at to find the maximal probability of transforming one multipartite state to another.Comment: 14 pages, REVTe

    Energy-time entangled qutrits: Bell tests and quantum communication

    Get PDF
    We have developed a scheme to generate, control, transmit and measure entangled photonic qutrits (two photons each of dimension d = 3). A Bell test of this source has previously been reported elsewhere [1], therefore, here we focus on how the control of the system is realized. Motivated by these results, we outline how the scheme can be used for two specific quantum protocols, namely key distribution and coin tossing and discuss some of their advantages and disadvantages.Comment: For the conference proceedings of QCMC 200

    General properties of Nonsignaling Theories

    Full text link
    This article identifies a series of properties common to all theories that do not allow for superluminal signaling and predict the violation of Bell inequalities. Intrinsic randomness, uncertainty due to the incompatibility of two observables, monogamy of correlations, impossibility of perfect cloning, privacy of correlations, bounds in the shareability of some states; all these phenomena are solely a consequence of the no-signaling principle and nonlocality. In particular, it is shown that for any distribution, the properties of (i) nonlocal, (ii) no arbitrarily shareable and (iii) positive secrecy content are equivalent.Comment: 10 page

    Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices

    Full text link
    Device independent quantum key distribution aims to provide a higher degree of security than traditional QKD schemes by reducing the number of assumptions that need to be made about the physical devices used. The previous proof of security by Pironio et al. applies only to collective attacks where the state is identical and independent and the measurement devices operate identically for each trial in the protocol. We extend this result to a more general class of attacks where the state is arbitrary and the measurement devices have no memory. We accomplish this by a reduction of arbitrary adversary strategies to qubit strategies and a proof of security for qubit strategies based on the previous proof by Pironio et al. and techniques adapted from Renner.Comment: 13 pages. Expanded main proofs with more detail, miscellaneous edits for clarit

    Non-realism : deep thought or a soft option ?

    Full text link
    The claim that the observation of a violation of a Bell inequality leads to an alleged alternative between nonlocality and non-realism is annoying because of the vagueness of the second term.Comment: 5 page

    Bell inequality with an arbitrary number of settings and its applications

    Full text link
    Based on a geometrical argument introduced by Zukowski, a new multisetting Bell inequality is derived, for the scenario in which many parties make measurements on two-level systems. This generalizes and unifies some previous results. Moreover, a necessary and sufficient condition for the violation of this inequality is presented. It turns out that the class of non-separable states which do not admit local realistic description is extended when compared to the two-setting inequalities. However, supporting the conjecture of Peres, quantum states with positive partial transposes with respect to all subsystems do not violate the inequality. Additionally, we follow a general link between Bell inequalities and communication complexity problems, and present a quantum protocol linked with the inequality, which outperforms the best classical protocol.Comment: 8 pages, To appear in Phys. Rev.

    Security bound of two-bases quantum key-distribution protocols using qudits

    Full text link
    We investigate the security bounds of quantum cryptographic protocols using dd-level systems. In particular, we focus on schemes that use two mutually unbiased bases, thus extending the BB84 quantum key distribution scheme to higher dimensions. Under the assumption of general coherent attacks, we derive an analytic expression for the ultimate upper security bound of such quantum cryptography schemes. This bound is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions such an equivalence is generally no longer valid.Comment: 12 pages, 2 figures, to appear in Phys. Rev.

    Separability problem for multipartite states of rank at most four

    Full text link
    One of the most important problems in quantum information is the separability problem, which asks whether a given quantum state is separable. We investigate multipartite states of rank at most four which are PPT (i.e., all their partial transposes are positive semidefinite). We show that any PPT state of rank two or three is separable and has length at most four. For separable states of rank four, we show that they have length at most six. It is six only for some qubit-qutrit or multiqubit states. It turns out that any PPT entangled state of rank four is necessarily supported on a 3x3 or a 2x2x2 subsystem. We obtain a very simple criterion for the separability problem of the PPT states of rank at most four: such a state is entangled if and only if its range contains no product vectors. This criterion can be easily applied since a four-dimensional subspace in the 3x3 or 2x2x2 system contains a product vector if and only if its Pluecker coordinates satisfy a homogeneous polynomial equation (the Chow form of the corresponding Segre variety). We have computed an explicit determinantal expression for the Chow form in the former case, while such expression was already known in the latter case.Comment: 19 page

    Nonlocality and entanglement in a strange system

    Get PDF
    We show that the relation between nonlocality and entanglement is subtler than one naively expects. In order to do this we consider the neutral kaon system--which is oscillating in time (particle--antiparticle mixing) and decaying--and describe it as an open quantum system. We consider a Bell--CHSH inequality and show a novel violation for non--maximally entangled states. Considering the change of purity and entanglement in time we find that, despite the fact that only two degrees of freedom at a certain time can be measured, the neutral kaon system does not behave like a bipartite qubit system.Comment: 7 pages, 2 figures, extended versio
    corecore