4,031 research outputs found

    Directed percolation with incubation times

    Full text link
    We introduce a model for directed percolation with a long-range temporal diffusion, while the spatial diffusion is kept short ranged. In an interpretation of directed percolation as an epidemic process, this non-Markovian modification can be understood as incubation times, which are distributed accordingly to a Levy distribution. We argue that the best approach to find the effective action for this problem is through a generalization of the Cardy-Sugar method, adding the non-Markovian features into the geometrical properties of the lattice. We formulate a field theory for this problem and renormalize it up to one loop in a perturbative expansion. We solve the various technical difficulties that the integrations possess by means of an asymptotic analysis of the divergences. We show the absence of field renormalization at one-loop order, and we argue that this would be the case to all orders in perturbation theory. Consequently, in addition to the characteristic scaling relations of directed percolation, we find a scaling relation valid for the critical exponents of this theory. In this universality class, the critical exponents vary continuously with the Levy parameter.Comment: 17 pages, 7 figures. v.2: minor correction

    Word matching using single closed contours for indexing handwritten historical documents

    Get PDF
    Effective indexing is crucial for providing convenient access to scanned versions of large collections of historically valuable handwritten manuscripts. Since traditional handwriting recognizers based on optical character recognition (OCR) do not perform well on historical documents, recently a holistic word recognition approach has gained in popularity as an attractive and more straightforward solution (Lavrenko et al. in proc. document Image Analysis for Libraries (DIAL’04), pp. 278–287, 2004). Such techniques attempt to recognize words based on scalar and profile-based features extracted from whole word images. In this paper, we propose a new approach to holistic word recognition for historical handwritten manuscripts based on matching word contours instead of whole images or word profiles. The new method consists of robust extraction of closed word contours and the application of an elastic contour matching technique proposed originally for general shapes (Adamek and O’Connor in IEEE Trans Circuits Syst Video Technol 5:2004). We demonstrate that multiscale contour-based descriptors can effectively capture intrinsic word features avoiding any segmentation of words into smaller subunits. Our experiments show a recognition accuracy of 83%, which considerably exceeds the performance of other systems reported in the literature

    Power-Set Functors and Saturated Trees

    Get PDF

    A status report on the observability of cosmic bubble collisions

    Full text link
    In the picture of eternal inflation as driven by a scalar potential with multiple minima, our observable universe resides inside one of many bubbles formed from transitions out of a false vacuum. These bubbles necessarily collide, upsetting the homogeneity and isotropy of our bubble interior, and possibly leading to detectable signatures in the observable portion of our bubble, potentially in the Cosmic Microwave Background or other precision cosmological probes. This constitutes a direct experimental test of eternal inflation and the landscape of string theory vacua. Assessing this possibility roughly splits into answering three questions: What happens in a generic bubble collision? What observational effects might be expected? How likely are we to observe a collision? In this review we report the current progress on each of these questions, improve upon a few of the existing results, and attempt to lay out directions for future work.Comment: Review article; comments very welcome. 24 pages + 4 appendices; 19 color figures. (Revised version adds two figures, minor edits.

    Decay of flux vacua to nothing

    Full text link
    We construct instanton solutions describing the decay of flux compactifications of a 6d6d gauge theory by generalizing the Kaluza-Klein bubble of nothing. The surface of the bubble is described by a smooth magnetically charged solitonic brane whose asymptotic flux is precisely that responsible for stabilizing the 4d compactification. We describe several instances of bubble geometries for the various vacua occurring in a 6d6d Einstein-Maxwell theory namely, AdS_4 x S^2, R^{1,3} x S^2, and dS_4 x S^2. Unlike conventional solutions, the bubbles of nothing introduced here occur where a {\em two}-sphere compactification manifold homogeneously degenerates.Comment: 31 pages, 15 figure

    Persistence, extinction and spatio-temporal synchronization of SIRS cellular automata models

    Full text link
    Spatially explicit models have been widely used in today's mathematical ecology and epidemiology to study persistence and extinction of populations as well as their spatial patterns. Here we extend the earlier work--static dispersal between neighbouring individuals to mobility of individuals as well as multi-patches environment. As is commonly found, the basic reproductive ratio is maximized for the evolutionary stable strategy (ESS) on diseases' persistence in mean-field theory. This has important implications, as it implies that for a wide range of parameters that infection rate will tend maximum. This is opposite with present results obtained in spatial explicit models that infection rate is limited by upper bound. We observe the emergence of trade-offs of extinction and persistence on the parameters of the infection period and infection rate and show the extinction time having a linear relationship with respect to system size. We further find that the higher mobility can pronouncedly promote the persistence of spread of epidemics, i.e., the phase transition occurs from extinction domain to persistence domain, and the spirals' wavelength increases as the mobility increasing and ultimately, it will saturate at a certain value. Furthermore, for multi-patches case, we find that the lower coupling strength leads to anti-phase oscillation of infected fraction, while higher coupling strength corresponds to in-phase oscillation.Comment: 12page

    Tunneling and propagation of vacuum bubbles on dynamical backgrounds

    Full text link
    In the context of bubble universes produced by a first-order phase transition with large nucleation rates compared to the inverse dynamical time scale of the parent bubble, we extend the usual analysis to non-vacuum backgrounds. In particular, we provide semi-analytic and numerical results for the modified nucleation rate in FLRW backgrounds, as well as a parameter study of bubble walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the thin-wall approximation. We show that in our model, matter in the background often prevents bubbles from successful expansion and forces them to collapse. For cases where they do expand, we give arguments why the effects on the interior spacetime are small for a wide range of reasonable parameters and discuss the limitations of the employed approximations.Comment: 29 pages, 8 figures, typos corrected, matches published versio

    Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    Full text link
    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 μ\mum has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation δE=m0gδx\delta E = m_0g \delta x. Here, the symbols δE\delta E, δx\delta x, m0m_0 and gg are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM
    corecore