1,528 research outputs found
ab initio Electronic Transport Model with Explicit Solution to the Linearized Boltzmann Transport Equation
Accurate models of carrier transport are essential for describing the
electronic properties of semiconductor materials. To the best of our knowledge,
the current models following the framework of the Boltzmann transport equation
(BTE) either rely heavily on experimental data (i.e., semi-empirical), or
utilize simplifying assumptions, such as the constant relaxation time
approximation (BTE-cRTA). While these models offer valuable physical insights
and accurate calculations of transport properties in some cases, they often
lack sufficient accuracy -- particularly in capturing the correct trends with
temperature and carrier concentration. We present here a general transport
model for calculating low-field electrical drift mobility and Seebeck
coefficient of n-type semiconductors, by explicitly considering all relevant
physical phenomena (i.e. elastic and inelastic scattering mechanisms). We first
rewrite expressions for the rates of elastic scattering mechanisms, in terms of
ab initio properties, such as the band structure, density of states, and polar
optical phonon frequency. We then solve the linear BTE to obtain the
perturbation to the electron distribution -- resulting from the dominant
scattering mechanisms -- and use this to calculate the overall mobility and
Seebeck coefficient. Using our model, we accurately calculate electrical
transport properties of the compound n-type semiconductors, GaAs and InN, over
various ranges of temperature and carrier concentration. Our fully predictive
model provides high accuracy when compared to experimental measurements on both
GaAs and InN, and vastly outperforms both semi-empirical models and the
BTE-cRTA. Therefore, we assert that this approach represents a first step
towards a fully ab initio carrier transport model that is valid in all compound
semiconductors
Effect of Native Defects on Optical Properties of InxGa1-xN Alloys
The energy position of the optical absorption edge and the free carrier
populations in InxGa1-xN ternary alloys can be controlled using high energy
4He+ irradiation. The blue shift of the absorption edge after irradiation in
In-rich material (x > 0.34) is attributed to the band-filling effect
(Burstein-Moss shift) due to the native donors introduced by the irradiation.
In Ga-rich material, optical absorption measurements show that the
irradiation-introduced native defects are inside the bandgap, where they are
incorporated as acceptors. The observed irradiation-produced changes in the
optical absorption edge and the carrier populations in InxGa1-xN are in
excellent agreement with the predictions of the amphoteric defect model
High fidelity quantum memory via dynamical decoupling: theory and experiment
Quantum information processing requires overcoming decoherence---the loss of
"quantumness" due to the inevitable interaction between the quantum system and
its environment. One approach towards a solution is quantum dynamical
decoupling---a method employing strong and frequent pulses applied to the
qubits. Here we report on the first experimental test of the concatenated
dynamical decoupling (CDD) scheme, which invokes recursively constructed pulse
sequences. Using nuclear magnetic resonance, we demonstrate a near order of
magnitude improvement in the decay time of stored quantum states. In
conjunction with recent results on high fidelity quantum gates using CDD, our
results suggest that quantum dynamical decoupling should be used as a first
layer of defense against decoherence in quantum information processing
implementations, and can be a stand-alone solution in the right parameter
regime.Comment: 6 pages, 3 figures. Published version. This paper was initially
entitled "Quantum gates via concatenated dynamical decoupling: theory and
experiment", by Jacob R. West, Daniel A. Lidar, Bryan H. Fong, Mark F. Gyure,
Xinhua Peng, and Dieter Suter. That original version split into two papers:
http://arxiv.org/abs/1012.3433 (theory only) and the current pape
Low field vortex matter in YBCO: an atomic beam magnetic resonance study
We report measurements of the low field structure of the magnetic vortex
lattice in an untwinned YBCO single-crystal platelet. Measurements were carried
out using a novel atomic beam magnetic resonance (ABMR) technique. For a 10.7 G
field applied parallel to the c-axis of the sample, we find a triangular
lattice with orientational order extending across the entire sample. We find
the triangular lattice to be weakly distorted by the a-b anisotropy of the
material and measure a distortion factor, f = 1.16. Model-experiment
comparisons determine a penetration depth, lambda_ab = 140 (+-20) nm. The paper
includes the first detailed description of the ABMR technique. We discuss both
technical details of the experiment and the modeling used to interpret the
measurements.Comment: 44 pages, 13 figures, submitted to Phys. Rev. B Revision includes
Postscript wrapped figures + minor typo
Host isotope mass effects on the hyperfine interaction of group-V donors in silicon
The effects of host isotope mass on the hyperfine interaction of group-V
donors in silicon are revealed by pulsed electron nuclear double resonance
(ENDOR) spectroscopy of isotopically engineered Si single crystals. Each of the
hyperfine-split P-31, As-75, Sb-121, Sb-123, and Bi-209 ENDOR lines splits
further into multiple components, whose relative intensities accurately match
the statistical likelihood of the nine possible average Si masses in the four
nearest-neighbor sites due to random occupation by the three stable isotopes
Si-28, Si-29, and Si-30. Further investigation with P-31 donors shows that the
resolved ENDOR components shift linearly with the bulk-averaged Si mass.Comment: 5 pages, 4 figures, 1 tabl
Aperiodic dynamical decoupling sequences in presence of pulse errors
Dynamical decoupling (DD) is a promising tool for preserving the quantum
states of qubits. However, small imperfections in the control pulses can
seriously affect the fidelity of decoupling, and qualitatively change the
evolution of the controlled system at long times. Using both analytical and
numerical tools, we theoretically investigate the effect of the pulse errors
accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G.
S. Uhrig, Phys. Rev. Lett. {\bf 98}, 100504 (2007)], and the Quadratic DD (QDD)
protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\bf 104},
130501 (2010)]. We consider the implementation of these sequences using the
electron spins of phosphorus donors in silicon, where DD sequences are applied
to suppress dephasing of the donor spins. The dependence of the decoupling
fidelity on different initial states of the spins is the focus of our study. We
investigate in detail the initial drop in the DD fidelity, and its long-term
saturation. We also demonstrate that by applying the control pulses along
different directions, the performance of QDD protocols can be noticeably
improved, and explain the reason of such an improvement. Our results can be
useful for future implementations of the aperiodic decoupling protocols, and
for better understanding of the impact of errors on quantum control of spins.Comment: updated reference
Flux-Line Lattice Structures in Untwinned YBa2Cu3O
A small angle neutron scattering study of the flux-line lattice in a large
single crystal of untwinned YBa2Cu3O is presented. In fields parallel to the
c-axis, diffraction spots are observed corresponding to four orientations of a
hexagonal lattice, distorted by the a-b anisotropy. A value for the anisotropy,
the penetration depth ratio, of 1.18(2) was obtained. The high quality of the
data is such that second order diffraction is observed, indicating a well
ordered FLL. With the field at 33 degrees to c a field dependent re-orientation
of the lattice is observed around 3T.Comment: 4 pages, 4 figure
- …
