401 research outputs found
Mode-coupling theory for structural and conformational dynamics of polymer melts
A mode-coupling theory for dense polymeric systems is developed which
unifyingly incorporates the segmental cage effect relevant for structural
slowing down and polymer chain conformational degrees of freedom. An ideal
glass transition of polymer melts is predicted which becomes molecular-weight
independent for large molecules. The theory provides a microscopic
justification for the use of the Rouse theory in polymer melts, and the results
for Rouse-mode correlators and mean-squared displacements are in good agreement
with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres
Subnanosecond spectral diffusion of a single quantum dot in a nanowire
We have studied spectral diffusion of the photoluminescence of a single CdSe
quantum dot inserted in a ZnSe nanowire. We have measured the characteristic
diffusion time as a function of pumping power and temperature using a recently
developed technique [G. Sallen et al, Nature Photon. \textbf{4}, 696 (2010)]
that offers subnanosecond resolution. These data are consistent with a model
where only a \emph{single} carrier wanders around in traps located in the
vicinity of the quantum dot
Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers
We present a theoretical and experimental investigation of the emission
characteristics and the flux of photon pairs generated by spontaneous
parametric downconversion in quasi-phase matched bulk crystals for the use in
quantum communication sources. We show that, by careful design, one can attain
well defined modes close to the fundamental mode of optical fibers and obtain
high coupling efficiencies also for bulk crystals, these being more easily
aligned than crystal waveguides. We distinguish between singles coupling,
conditional coincidence, and pair coupling, and show how each of these
parameters can be maximized by varying the focusing of the pump mode and the
fiber-matched modes using standard optical elements. Specifically we analyze a
periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs
at 810 nm and 1550 nm. Numerical calculations lead to coupling efficiencies
above 94% at optimal focusing, which is found by the geometrical relation L/z_R
to be ~ 1 to 2 for the pump mode and ~ 2 to 3 for the fiber-modes, where L is
the crystal length and z_R is the Rayleigh-range of the mode-profile. These
results are independent on L. By showing that the single-mode bandwidth
decreases as 1/L, we can therefore design the source to produce and couple
narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means
both less chromatic dispersion for long propagation distances in fibers, and
that telecom Bragg gratings can be utilized to compensate for broadened photon
packets--a vital problem for time-multiplexed qubits. Longer crystals also
yield an increase in fiber photon flux proportional to sqrt{L}, and so,
assuming correct focusing, we can only see advantages using long crystals.Comment: 19 pages, 15 figures, ReVTeX4, minor revisio
Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission
When a single quantum of electromagnetic field excitation is added to the
same spatio-temporal mode of a coherent state, a new field state is generated
that exhibits intermediate properties between those of the two parents. Such a
single-photon-added coherent state is obtained by the action of the photon
creation operator on a coherent state and can thus be regarded as the result of
the most elementary excitation process of a classical light field. Here we
present and describe in depth the experimental realization of such states and
their complete analysis by means of a novel ultrafast, time-domain, quantum
homodyne tomography technique clearly revealing their non-classical character.Comment: 9 pages, 9 figures. Accepted for publication in Phys. Rev.
Subnanosecond spectral diffusion measurement using photon correlation
Spectral diffusion is a result of random spectral jumps of a narrow line as a
result of a fluctuating environment. It is an important issue in spectroscopy,
because the observed spectral broadening prevents access to the intrinsic line
properties. However, its characteristic parameters provide local information on
the environment of a light emitter embedded in a solid matrix, or moving within
a fluid, leading to numerous applications in physics and biology. We present a
new experimental technique for measuring spectral diffusion based on photon
correlations within a spectral line. Autocorrelation on half of the line and
cross-correlation between the two halves give a quantitative value of the
spectral diffusion time, with a resolution only limited by the correlation
set-up. We have measured spectral diffusion of the photoluminescence of a
single light emitter with a time resolution of 90 ps, exceeding by four orders
of magnitude the best resolution reported to date
Single-qubit optical quantum fingerprinting
We analyze and demonstrate the feasibility and superiority of linear optical
single-qubit fingerprinting over its classical counterpart. For one-qubit
fingerprinting of two-bit messages, we prepare `tetrahedral' qubit states
experimentally and show that they meet the requirements for quantum
fingerprinting to exceed the classical capability. We prove that shared
entanglement permits 100% reliable quantum fingerprinting, which will
outperform classical fingerprinting even with arbitrary amounts of shared
randomness.Comment: 4 pages, one figur
Efficient single-photon emission from electrically driven InP quantum dots epitaxially grown on Si(001)
The heteroepitaxy of III-V semiconductors on silicon is a promising approach
for making silicon a photonic platform for on-chip optical interconnects and
quantum optical applications. Monolithic integration of both material systems
is a long-time challenge, since different material properties lead to high
defect densities in the epitaxial layers. In recent years, nanostructures
however have shown to be suitable for successfully realising light emitters on
silicon, taking advantage of their geometry. Facet edges and sidewalls can
minimise or eliminate the formation of dislocations, and due to the reduced
contact area, nanostructures are little affected by dislocation networks. Here
we demonstrate the potential of indium phosphide quantum dots as efficient
light emitters on CMOS-compatible silicon substrates, with luminescence
characteristics comparable to mature devices realised on III-V substrates. For
the first time, electrically driven single-photon emission on silicon is
presented, meeting the wavelength range of silicon avalanche photo diodes'
highest detection efficiency
An ultra-sensitive pulsed balanced homodyne detector: Application to time-domain quantum measurements
A pulsed balanced homodyne detector has been developed for precise
measurements of electric field quadratures of pulsed optical quantum states. A
high level of common mode suppression (> 85 dB) and low electronic noise (730
electrons per pulse) provide a signal to noise ratio of 14 dB for the
measurement of the quantum noise of individual pulses. Measurements at
repetition rates up to 1 MHz are possible. As a test, quantum tomography of the
coherent state is performed and the Wigner function and the density matrix are
reconstructed with a 99.5% fidelity. The detection system can also be used for
ultrasensitive balanced detection in cw mode, e.g. for weak absorption
measurements.Comment: 3 pages, submitted to Optics Letter
- …
