5,461 research outputs found
Parameter estimation of electricity spot models from futures prices
We consider a slight perturbation of the Schwartz-Smith model for the electricity futures prices and the resulting modified spot model. Using the martingale property of the modified price under the risk neutral measure, we derive the arbitrage free model for the spot and futures prices. We estimate the parameters of the model by the method of maximum likelihood using the Kalman filter's estimate of the unobservable state variables, coupled with the usual statistical techniques. The main advantage of the new model is that it avoids the inclusion of artificial noise to the observation equation for the implementation of Kalman filter. The extra noise is build in within the model in an arbitrage free setting
The performance of thin NaI(Tl) scintillator plate for dark matter search
A thin (0.05cm) and wide area (5cmX5cm) NaI(Tl) scintillator was developed.
The performance of the thin NaI(Tl) plate, energy resolution, single
photoelectron energy and position sensitivity were tested. An excellent energy
resolution of 20% (FWHM) at 60keV was obtained. The single photoelectron energy
was calculated to be approximately 0.42 0.02keV. Position information in the
5cmx5cm area of the detector was also obtained by analyzing the ratio of the
number of photons collected at opposite ends of the detector. The position
resolution was obtained to be 1cm (FWHM) in the 5cmx5cm area.Comment: 10 pages. Accepted to Journal of Physical Society of Japa
Clocking hadronization in relativistic heavy ion collisions with balance functions
A novel state of matter has been hypothesized to exist during the early stage
of relativistic heavy ion collisions, with normal hadrons not appearing until
several fm/c after the start of the reaction. To test this hypothesis,
correlations between charges and their associated anticharges are evaluated
with the use of balance functions. It is shown that late-stage hadronization is
characterized by tightly correlated charge/anticharge pairs when measured as a
function of relative rapidity.Comment: 5 pages, 3 figure
Transformations between WISE, 2MASS, SDSS and BVRI photometric systems: I. Transformation equations for dwarfs
We present colour transformations for the conversion of the W1 and W2
magnitudes of WISE photometric system to the Johnson-Cousins' BVRI, SDSS (gri),
and 2MASS (JHK_s) photometric systems, for dwarfs. The W3 and W4 magnitudes
were not considered due to their insufficient signal to noise ratio (S/N). The
coordinates of 825 dwarfs along with their BVRI, gri, and JHK_s data, taken
from Bilir et al. (2008) were matched with the coordinates of stars in the
preliminary data release of WISE (Wright et al., 2010) and a homogeneous dwarf
sample with high S/N ratio have been obtained using the following constraints:
1) the data were dereddened, 2) giants were identified and excluded from the
sample, 3) sample stars were selected according to data quality, 4)
transformations were derived for sub samples of different metallicity range,
and 5) transformations are two colour dependent. These colour transformations,
coupled with known absolute magnitudes at shorter wavelenghts, can be used in
space density evaluation for the Galactic (thin and thick) discs, at distances
larger than the ones evaluated with JHK_s photometry.Comment: 16 pages, including 5 figures and 7 tables, accepted for publication
in MNRA
Unique Identification of Graviton Exchange Effects in e^+ e^- Collisions
Many types of new physics can lead to contact interaction-like modifications
in e^+ e^- processes below direct production threshold. We examine the
possibility of uniquely identifying the effects of graviton exchange, which are
anticipated in many extra dimensional theories, from amongst this large set of
models by using the moments of the angular distribution of the final state
particles. In the case of the e^+ e^- --> f bar{f} process we demonstrate that
this technique allows for the unique identification of the graviton exchange
signature at the 5 sigma level for mass scales as high as 6 sqrt(s). The
extension of this method to the e^+ e^- --> W^+ W^- process is also discussed.Comment: 21 pages, 3 figs, LaTe
A Two-Year Time Delay for the Lensed Quasar SDSS J1029+2623
We present 279 epochs of optical monitoring data spanning 5.4 years from 2007
January to 2012 June for the largest image separation (22.6 arcsec)
gravitationally lensed quasar, SDSS J1029+2623. We find that image A leads the
images B and C by dt_AB = (744+-10) days (90% confidence); the uncertainty
includes both statistical uncertainties and systematic differences due to the
choice of models. With only a ~1% fractional error, the interpretation of the
delay is limited primarily by cosmic variance due to fluctuations in the mean
line-of-sight density. We cannot separate the fainter image C from image B, but
since image C trails image B by only 2-3 days in all models, the estimate of
the time delay between image A and B is little affected by combining the fluxes
of images B and C. There is weak evidence for a low level of microlensing,
perhaps created by the small galaxy responsible for the flux ratio anomaly in
this system. Interpreting the delay depends on better constraining the shape of
the gravitational potential using the lensed host galaxy, other lensed arcs and
the structure of the X-ray emission.Comment: Accepted for publication in The Astrophysical Journal. Changes in
response to referee's comment
ANOMALOUS GAUGE BOSON INTERACTIONS
We discuss the direct measurement of the trilinear vector boson couplings in
present and future collider experiments. The major goals of such experiments
will be the confirmation of the Standard Model (SM) predictions and the search
for signals of new physics. We review our current theoretical understanding of
anomalous trilinear gauge boson self-interactions. If the energy scale of the
new physics is TeV, these low energy anomalous couplings are expected
to be no larger than . Constraints from high precision
measurements at LEP and low energy charged and neutral current processes are
critically reviewed.Comment: 53 pages with 17 embedded figures, LaTeX, uses axodraw.sty, figures
available on request. The complete paper, is available at
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z or
http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z Summary
of the DPF Working Subgroup on Anomalous Gauge Boson Interactions of the DPF
Long Range Planning Stud
Scale Dependence of Halo Bispectrum from Non-Gaussian Initial Conditions in Cosmological N-body Simulations
We study the halo bispectrum from non-Gaussian initial conditions. Based on a
set of large -body simulations starting from initial density fields with
local type non-Gaussianity, we find that the halo bispectrum exhibits a strong
dependence on the shape and scale of Fourier space triangles near squeezed
configurations at large scales. The amplitude of the halo bispectrum roughly
scales as . The resultant scaling on the triangular shape is consistent
with that predicted by Jeong & Komatsu based on perturbation theory. We
systematically investigate this dependence with varying redshifts and halo mass
thresholds. It is shown that the dependence of the halo bispectrum is
stronger for more massive haloes at higher redshifts. This feature can be a
useful discriminator of inflation scenarios in future deep and wide galaxy
redshift surveys.Comment: 27 pages, 10 figures; revised argument in section 6, added appendix
C, JCAP accepted versio
Automated user modeling for personalized digital libraries
Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to
improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in
an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information
Synchronization of Coupled Nonidentical Genetic Oscillators
The study on the collective dynamics of synchronization among genetic
oscillators is essential for the understanding of the rhythmic phenomena of
living organisms at both molecular and cellular levels. Genetic oscillators are
biochemical networks, which can generally be modelled as nonlinear dynamic
systems. We show in this paper that many genetic oscillators can be transformed
into Lur'e form by exploiting the special structure of biological systems. By
using control theory approach, we provide a theoretical method for analyzing
the synchronization of coupled nonidentical genetic oscillators. Sufficient
conditions for the synchronization as well as the estimation of the bound of
the synchronization error are also obtained. To demonstrate the effectiveness
of our theoretical results, a population of genetic oscillators based on the
Goodwin model are adopted as numerical examples.Comment: 16 pages, 3 figure
- …
