514 research outputs found

    Comparative study of ordered and disordered Y1-xSrxCoO3-d

    Full text link
    We have succeeded in preparing A-site ordered- and disordered-Y1/4Sr3/4CoO3-d with various oxygen deficiencies delta, and have made comparative study of their structural and physical properties. In the A-site ordered structure, oxygen vacancies order, and d = 0.34 sample shows a weak ferromagnetic transition beyond 300 K. On the other hand, in the A-site disordered structure, no oxygen vacancy ordering is observed, and d = 0.16 sample shows a ferromagnetic metallic transition around 150 K. A-site disordering destroys the orderings of oxygen-vacancies and orbitals, leading to the strong modification of the electronic phases.Comment: 3 pages, 3 figures, proceeding of 52nd Mangetism and Magnetic Materials Conference (MMM 2007), published in Journal of Applied Physic

    Cr-doping effect on the orbital fluctuation of heavily doped Nd1-xSrxMnO3 (x ~ 0.625)

    Full text link
    We have investigated the Cr-doping effect of Nd0.375Sr0.625MnO3 near the phase boundary between the x2-y2 and 3z2-r2 orbital ordered states, where a ferromagnetic correlation and concomitant large magnetoresistance are observed owing to orbital fluctuation. Cr-doping steeply suppresses the ferromagnetic correlation and magnetoresistance in Nd0.375Sr0.625Mn1-yCryO3 with 0 < y < 0.05, while they reappear in 0.05 < y < 0.10. Such a reentrant behavior implies that a phase boundary is located at y = 0.05, or a phase crossover occurs across y = 0.05.Comment: 3 pages, 3 figures, to be published in Journal of Applied Physic

    Electron- and Hole-Doping Effects on AA-site Ordered NdBaMn2_2O6_6

    Full text link
    We have investigated electron- and hole-doping effects on AA-site ordered perovskite manganite NdBaMn2_2O6_6, which has the AA-type (layered) antiferromagnetic (AFM) ground state. Electrons (holes) are introduced by partial substitution of Ba2+^{2+} (Nd3+^{3+}) with Nd3+^{3+} (Ba2+^{2+}). Electron-doping generates ferromagnetic (FM) clusters in the AA-type AFM matrix. With increasing the electron-doping level, the volume fraction of the FM phase or the number of the FM clusters is abruptly increasing. In contrast, the AA-type AFM phase is robust against the hole-doping, and no FM correlation is observed in the hole-doped NdBaMn2_2O6_6.Comment: 8 pages, 5 figures, to be published in Journal of the Physical Society of Japa

    A-site Randomness Effect on Structural and Physical Properties of Ba-based Perovskite Manganites

    Full text link
    The discovery of novel structural and physical properties in the AA-site ordered manganite RRBaMn2_{2}O6_{6} (RR = Y and rare earth elements) has demanded new comprehension about perovskite manganese oxides. In the present study, the AA-site disordered form, R0.5R_{0.5}Ba0.5_{0.5}MnO3_{3}, has been investigated and compared with both RRBaMn2_{2}O6_{6} and R0.5A0.5R_{0.5}A_{0.5}MnO3_{3} (AA: Sr, Ca) in the structures and electromagnetic properties. R0.5R_{0.5}Ba0.5_{0.5}MnO3_{3} has a primitive cubic perovskite cell in the structure and magnetic glassy states are dominant as its ground state, in contrast to the ordinary disordered R0.5A0.5R_{0.5}A_{0.5}MnO3_{3} (AA: Sr, Ca). In Pr-compounds with various degrees of Pr/Ba randomness at the AA-sites, the AA-site disorder gradually suppresses both ferromagnetic and A-type antiferromagnetic transitions and finally leads to a magnetic glassy state in Pr0.5_{0.5}Ba0.5_{0.5}MnO3_{3}. A peculiar behavior, multi-step magnetization and resistivity change, has been observed in Pr0.5_{0.5}Ba0.5_{0.5}MnO3_{3}. These properties could be closely related to any spatial heterogeneity caused by the random distribution of Ba2+^{2 +} and R3+R^{3 +} with much different ionic radius.Comment: 9 pages, to be published in J. Phys. Soc. Jpn. 73 Aug. (2004

    Synchronization of multi-phase oscillators: An Axelrod-inspired model

    Full text link
    Inspired by Axelrod's model of culture dissemination, we introduce and analyze a model for a population of coupled oscillators where different levels of synchronization can be assimilated to different degrees of cultural organization. The state of each oscillator is represented by a set of phases, and the interaction --which occurs between homologous phases-- is weighted by a decreasing function of the distance between individual states. Both ordered arrays and random networks are considered. We find that the transition between synchronization and incoherent behaviour is mediated by a clustering regime with rich organizational structure, where some of the phases of a given oscillator can be synchronized to a certain cluster, while its other phases are synchronized to different clusters.Comment: 6 pages, 5 figure

    Transport and Magnetic Properties of R1-xAxCoO3 (R=La, Pr and Nd; A=Ba, Sr and Ca)

    Full text link
    Transport and magnetic measurements have been carried out on perovskite Co-oxides R1-xAxCoO3 (R=La, Pr, and Nd; A=Ba, Sr and Ca; 0<x<0.5: All sets of the R and A species except Nd1-xBaxCoO3 have been studied.). With increasing the Sr- or Ba-concentration x, the system becomes metallic ferromagnet with rather large magnetic moments. For R=Pr and Nd and A=Ca, the system approaches the metal- insulator phase boundary but does not become metallic. The magnetic moments of the Ca-doped systems measured with the magnetic field H=0.1 T are much smaller than those of the Ba- and Sr-doped systems. The thermoelectric powers of the Ba- and Sr-doped systems decrease from large positive values of lightly doped samples to negative ones with increasing doping level, while those of Ca-doped systems remain positive. These results can be understood by considering the relationship between the average ionic radius of R1-xAx and the energy difference between the low spin and intermediate spin states. We have found the resistivity-anomaly in the measurements of Pr1-xCaxCoO3 under pressure in the wide region of x, which indicates the existence of a phase transition different from the one reported in the very restricted region of x~0.5 at ambient pressure [Tsubouchi et al. Phys. Rev. B 66 (2002) 052418.]. No indication of this kind of transition has been observed in other species of R.Comment: 9 pages, 8 figures. J. Phys. Soc. Jpn. 72 (2003) No.

    Structural Disorder Induced Polaron Formation and Magnetic Scattering in the Disordered Holstein-Double Exchange Model

    Full text link
    In this paper we present results on the disordered Holstein-Double Exchange model, explicitly in three dimension and `metallic' densities, obtained by using a recently developed Monte Carlo approach. Following up on our earlier paper, cond-mat/0406085, here we provide a detailed microscopic picture of the thermally driven metal-insulator transition (MIT) that arises close to the ferromagnet to paramagnet transition in this problem. This paper is focused mainly on the `diagnostics', clarifying the origin of the effective disorder that drives the MIT in this system. To that effect, we provide results on the thermal evolution of the distributions of (i) lattice distortions, (ii) the net `structural disorder' and (iii) the `hopping disorder' arising from spin randomness feeding back through the Hunds coupling. We suggest a phenomenology for the thermally driven MIT, viewing it as an `Anderson-Holstein' transition.Comment: 6 pages, latex, JPSJ style, 7 eps figs. Style files included. Proceedings of the SPQS Meeting at Sendai, Japan, 2004. To appear in JPS

    An Origin of CMR: Competing Phases and Disorder-Induced Insulator-to-Metal Transition in Manganites

    Full text link
    We theoretically explore the mechanism of the colossal magnetoresistance in manganese oxides by explicitly taking into account the phase competition between the double-exchange ferromagnetism and the charge-ordered insulator. We find that quenched disorder causes a drastic change of the multicritical phase diagram by destroying the charge-ordered state selectively. As a result, there appears a nontrivial phenomenon of the disorder-induced insulator-to-metal transition in the multicritical regime. On the contrary, the disorder induces a highly-insulating state above the transition temperature where charge-ordering fluctuations are much enhanced. The contrasting effects provide an understanding of the mechanism of the colossal magnetoresistance. The obtained scenario is discussed in comparison with other theoretical proposals such as the polaron theory, the Anderson localization, the multicritical-fluctuation scenario, and the percolation scenario.Comment: 16 pages, 7 figures, submitted to Wandlitz Days on Magnetism: Local-Moment Ferromagnets: Unique Properties for Modern Application

    Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_2O_5

    Full text link
    We have investigated electronic structures of antiferromagnetic YBaCo_2O_5 using the local spin-density approximation (LSDA) + U method. The charge and orbital ordered insulating ground state is correctly obtained with the strong on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the high spin (HS) and intermediate spin (IS) state, respectively. It is considered that the tetragonal to orthorhombic structural transition is responsible for the ordering phenomena and the spin states of Co ions. The large contribution of the orbital moment to the total magnetic moment indicates that the spin-orbit coupling is also important in YBaCo_2O_5.Comment: 4 pages including 4 figures, Submitted to Phys. Rev. Let

    The nanoscale phase separation in hole-doped manganites

    Full text link
    A macroscopic phase separation, in which ferromagnetic clusters are observed in an insulating matrix, is sometimes observed, and believed to be essential to the colossal magnetoresistive (CMR) properties of manganese oxides. The application of a magnetic field may indeed trigger large magnetoresistance effects due to the percolation between clusters allowing the movement of the charge carriers. However, this macroscopic phase separation is mainly related to extrinsic defects or impurities, which hinder the long-ranged charge-orbital order of the system. We show in the present article that rather than the macroscopic phase separation, an homogeneous short-ranged charge-orbital order accompanied by a spin glass state occurs, as an intrinsic result of the uniformity of the random potential perturbation induced by the solid solution of the cations on the AA-sites of the structure of these materials. Hence the phase separation does occur, but in a more subtle and interesting nanoscopic form, here referred as ``homogeneous''. Remarkably, this ``nanoscale phase separation'' alone is able to bring forth the colossal magnetoresistance in the perovskite manganites, and is potentially relevant to a wide variety of other magnetic and/or electrical properties of manganites, as well as many other transition metal oxides, in bulk or thin film form as we exemplify throughout the article.Comment: jpsj2 TeX style (J. Phys. Soc. Jpn); 18 pages, 7 figure
    corecore