392 research outputs found
Molecular Dynamics Study of the Nematic-Isotropic Interface
We present large-scale molecular dynamics simulations of a nematic-isotropic
interface in a system of repulsive ellipsoidal molecules, focusing in
particular on the capillary wave fluctuations of the interfacial position. The
interface anchors the nematic phase in a planar way, i.e., the director aligns
parallel to the interface. Capillary waves in the direction parallel and
perpendicular to the director are considered separately. We find that the
spectrum is anisotropic, the amplitudes of capillary waves being larger in the
direction perpendicular to the director. In the long wavelength limit, however,
the spectrum becomes isotropic and compares well with the predictions of a
simple capillary wave theory.Comment: to appear in Phys. Rev.
Numerical Study of Spin and Chiral Order in a Two-Dimensional XY Spin Glass
The two dimensional XY spin glass is studied numerically by a finite size
scaling method at T=0 in the vortex representation which allows us to compute
the exact (in principle) spin and chiral domain wall energies. We confirm
earlier predictions that there is no glass phase at any finite T. Our results
strongly support the conjecture that both spin and chiral order have the same
correlation length exponent . We obtain preliminary results
in 3d.Comment: 4 pages, 2 figures, revte
Domain Wall Renormalization Group Study of XY Model with Quenched Random Phase Shifts
The XY model with quenched random disorder is studied by a zero temperature
domain wall renormalization group method in 2D and 3D. Instead of the usual
phase representation we use the charge (vortex) representation to compute the
domain wall, or defect, energy. For the gauge glass corresponding to the
maximum disorder we reconfirm earlier predictions that there is no ordered
phase in 2D but an ordered phase can exist in 3D at low temperature. However,
our simulations yield spin stiffness exponents in 2D
and in 3D, which are considerably larger than
previous estimates and strongly suggest that the lower critical dimension is
less than three. For the XY spin glass in 3D, we obtain a spin
stiffness exponent which supports the existence of
spin glass order at finite temperature in contrast with previous estimates
which obtain . Our method also allows us to study
renormalization group flows of both the coupling constant and the disorder
strength with length scale . Our results are consistent with recent analytic
and numerical studies suggesting the absence of a re-entrant transition in 2D
at low temperature. Some possible consequences and connections with real vortex
systems are discussed.Comment: 14 pages, 9 figures, revtex
Numerical Study of Order in a Gauge Glass Model
The XY model with quenched random phase shifts is studied by a T=0 finite
size defect energy scaling method in 2d and 3d. The defect energy is defined by
a change in the boundary conditions from those compatible with the true ground
state configuration for a given realization of disorder. A numerical technique,
which is exact in principle, is used to evaluate this energy and to estimate
the stiffness exponent . This method gives in
2d and in 3d, which are considerably larger than
previous estimates, strongly suggesting that the lower critical dimension is
less than three. Some arguments in favor of these new estimates are given.Comment: 4 pages, 2 figures, revtex. Submitted to Phys. Rev. Let
Nonlinearity-Tolerant Modulation Formats for Coherent Optical Communications
Fiber nonlinearity is the main factor limiting the transmission distance of coherent optical communications. We overview several modulation formats intrinsically tolerant to fiber nonlinearity. We recently proposed family of 4D modulation formats based on 2-ary amplitude 8-ary phase-shift keying (2A8PSK), covering the spectral efficiency of 5, 6, and 7 bits/4D symbol, which will be explained in detail in this chapter. These coded modulation formats fill the gap of spectral efficiency between DP-QPSK and DP-16QAM, showing superb performance both in linear and nonlinear regimes. Since these modulation formats share the same constellation and use different parity bit expressions only, digital signal processing can accommodate those multiple modulation formats with minimum additional complexity. Nonlinear transmission simulations indicate that these modulation formats outperform the conventional formats at each spectral efficiency. We also review DSP algorithms and experimental results. Their application to time-domain hybrid modulation for 4–8 bits/4D symbol is also reviewed. Furthermore, an overview of an eight-dimensional 2A8PSK-based modulation format based on a Grassmann code is also given. All these results indicate that the 4D-2A8PSK family show great promise of excellent linear and nonlinear performances in the spectral efficiency between 3.5 and 8 bits/4D symbol
Genome-wide RNA-Sequencing analysis reveals a distinct fibrosis gene signature in the conjunctiva after glaucoma surgery
Fibrosis-related events play a part in most blinding diseases worldwide. However, little is known about the mechanisms driving this complex multifactorial disease. Here we have carried out the first genome-wide RNA-Sequencing study in human conjunctival fibrosis. We isolated 10 primary fibrotic and 7 non-fibrotic conjunctival fibroblast cell lines from patients with and without previous glaucoma surgery, respectively. The patients were matched for ethnicity and age. We identified 246 genes that were differentially expressed by over two-fold and p < 0.05, of which 46 genes were upregulated and 200 genes were downregulated in the fibrotic cell lines compared to the non-fibrotic cell lines. We also carried out detailed gene ontology, KEGG, disease association, pathway commons, WikiPathways and protein network analyses, and identified distinct pathways linked to smooth muscle contraction, inflammatory cytokines, immune mediators, extracellular matrix proteins and oncogene expression. We further validated 11 genes that were highly upregulated or downregulated using real-time quantitative PCR and found a strong correlation between the RNA-Seq and qPCR results. Our study demonstrates that there is a distinct fibrosis gene signature in the conjunctiva after glaucoma surgery and provides new insights into the mechanistic pathways driving the complex fibrotic process in the eye and other tissues
- …
