60 research outputs found
Role of the Transcriptional Corepressor Bcor in Embryonic Stem Cell Differentiation and Early Embryonic Development
Bcor (BCL6 corepressor) is a widely expressed gene that is mutated in patients with X-linked Oculofaciocardiodental (OFCD) syndrome. BCOR regulates gene expression in association with a complex of proteins capable of epigenetic modification of chromatin. These include Polycomb group (PcG) proteins, Skp-Cullin-F-box (SCF) ubiquitin ligase components and a Jumonji C (Jmjc) domain containing histone demethylase. To model OFCD in mice and dissect the role of Bcor in development we have characterized two loss of function Bcor alleles. We find that Bcor loss of function results in a strong parent-of-origin effect, most likely indicating a requirement for Bcor in extraembryonic development. Using Bcor loss of function embryonic stem (ES) cells and in vitro differentiation assays, we demonstrate that Bcor plays a role in the regulation of gene expression very early in the differentiation of ES cells into ectoderm, mesoderm and downstream hematopoietic lineages. Normal expression of affected genes (Oct3/4, Nanog, Fgf5, Bmp4, Brachyury and Flk1) is restored upon re-expression of Bcor. Consistent with these ES cell results, chimeric animals generated with the same loss of function Bcor alleles show a low contribution to B and T cells and erythrocytes and have kinked and shortened tails, consistent with reduced Brachyury expression. Together these results suggest that Bcor plays a role in differentiation of multiple tissue lineages during early embryonic development
Increased CCL19 and CCL21 levels promote fibroblast ossification in ankylosing spondylitis hip ligament tissue
The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review
Physical conditions and chemical abundances in photoionized nebulae from optical spectra
This chapter presents a review on the latest advances in the computation of
physical conditions and chemical abundances of elements present in photoionized
gas H II regions and planetary nebulae). The arrival of highly sensitive
spectrographs attached to large telescopes and the development of more
sophisticated and detailed atomic data calculations and ionization correction
factors have helped to raise the number of ionic species studied in
photoionized nebulae in the last years, as well as to reduce the uncertainties
in the computed abundances. Special attention will be given to the detection of
very faint lines such as heavy-element recombination lines of C, N and O in H
II regions and planetary nebulae, and collisionally excited lines of
neutron-capture elements (Z >30) in planetary nebulae.Comment: Book Chapter. 31 pages. 6 Figures. Accepted for publication in the
book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to
Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded
by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad
Astra Simul" 2017-1-CZ01-KA203-03556
Neural processing of natural sounds
Natural sounds include animal vocalizations, environmental sounds such as wind, water and fire noises and non-vocal sounds made by animals and humans for communication. These natural sounds have characteristic statistical properties that make them perceptually salient and that drive auditory neurons in optimal regimes for information transmission.Recent advances in statistics and computer sciences have allowed neuro-physiologists to extract the stimulus-response function of complex auditory neurons from responses to natural sounds. These studies have shown a hierarchical processing that leads to the neural detection of progressively more complex natural sound features and have demonstrated the importance of the acoustical and behavioral contexts for the neural responses.High-level auditory neurons have shown to be exquisitely selective for conspecific calls. This fine selectivity could play an important role for species recognition, for vocal learning in songbirds and, in the case of the bats, for the processing of the sounds used in echolocation. Research that investigates how communication sounds are categorized into behaviorally meaningful groups (e.g. call types in animals, words in human speech) remains in its infancy.Animals and humans also excel at separating communication sounds from each other and from background noise. Neurons that detect communication calls in noise have been found but the neural computations involved in sound source separation and natural auditory scene analysis remain overall poorly understood. Thus, future auditory research will have to focus not only on how natural sounds are processed by the auditory system but also on the computations that allow for this processing to occur in natural listening situations.The complexity of the computations needed in the natural hearing task might require a high-dimensional representation provided by ensemble of neurons and the use of natural sounds might be the best solution for understanding the ensemble neural code
Safe anastomosis in laparoscopic and robotic low anterior resection for rectal cancer: A narrative review and outcomes study from an expert tertiary center
Percutaneous tibial nerve stimulation<i>vs</i>sacral nerve stimulation for faecal incontinence: a comparative case-matched study
Recommended from our members
CALIFA, the Calar Alto Legacy Integral Field Area survey IV. Third public data release
This paper describes the Third Public Data Release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the Second Public Data Release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5m telescope at the Calar Alto Observatory. Three different spectral setups are available: i) a low-resolution V500 setup covering the wavelength range 3745–7500 Å (4240-7140 Å unvignetted) with a spectral resolution of 6.0 Å (FWHM) for 646 galaxies, ii) a medium-resolution V1200 setup covering the wavelength range 3650–4840 Å (3650-4620 Å unvignetted) with a spectral resolution of 2.3 Å (FWHM) for 484 galaxies, and iii) the combination of the cubes from both setups (called COMBO) with a spectral resolution of 6.0 Å and a wavelength range between 3700-7500 Å (3700-7140 Å unvignetted) for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar masses, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and are therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved image reconstruction quality. In total, the third data release contains 1576 datacubes, including ∼1.5 million independent spectra. It is available at http://califa.caha.es/DR3.CALIFA is the first legacy survey being performed at Calar Alto. The CALIFA collaboration would like to thank the IAA-CSIC and MPIAMPG as major partners of the observatory, and CAHA itself, for the unique access to telescope time and support in manpower and infrastructures. The CALIFA collaboration thanks also the CAHA staff for the dedication to this project. We thank the anonymous referee for his/her help in improving this article. SFS thanks the director of CEFCA, M. Moles, for his sincere support to this project. SFS thanks the CONACYT-125180 and DGAPA-IA100815 projects for providing him support in this study. RGB, RGD, and EP are supported by grants AYA2014-57490-P and JA-FQM-2828. SZ is supported by the EU Marie Curie Integration Grant “SteMaGE” Nr. PCIG12-GA-2012-326466 (Call Identifier: FP7-PEOPLE-2012 CIG). J. F-B. from grant AYA2013-48226-C3-1-P from the Spanish Ministry of Economy and Competitiveness (MINECO), as well as from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement number 289313 B.G-L- acknowledges financial support by the Spanish MINECO under grants AYA2013- 41656-P and AYA2015-68217-P Support for L.G. is provided by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, MAS. L.G. also acknowledges support by CONICYT through FONDECYT grant 3140566. and AYA2013-42227-P from the Spanish Ministerio de Ciencia e Innovación and TIC 114 and PO08-TIC-3531 from Junta de Andalucía. AG acknowledges support from the FP7/2007-2013 under grant agreement n. 267251 (AstroFIt). RAM was funded by the Spanish programme of International Campus of Excellence Moncloa (CEI). JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). IM and AdO acknowledge the support by the projects AYA2010-15196 from the Spanish Ministerio de Ciencia e Innovación and TIC 114 and PO08-TIC-3531 from Junta de Andalucía. AMI acknowledges support from Agence Nationale de la Recherche through the STILISM project (ANR-12-BS05-0016-02). MM acknowledges financial support from AYA2010-21887-C04-02 from the Ministerio de Economía y Competitividad. PSB acknowledges support from the Ramón y Cajal program, grant ATA2010-21322-C03-02 from the Spanish Ministry of Economy and Competitiveness (MINECO). CJW acknowledges support through the Marie Curie Career Integration Grant 303912. VW acknowledges support from the European Research Council Starting Grant (SEDMorph P.I. V. Wild) and European Career Re-integration Grant (Phiz-Ev P.I. V. Wild). YA acknowledges financial support from the Ramón y Cajal programme (RyC-2011-09461) and project AYA2013-47742-C4-3-P, both managed by the Ministerio de Economía y Competitividad, as well as the ‘Study of Emission-Line Galaxies with Integral-Field Spectroscopy’ (SELGIFS) programme, funded by the EU (FP7-PEOPLE-2013- IRSES-612701) within the Marie-Sklodowska-Curie Actions scheme. ROM acknowledges support from CAPES (Brazil) through a PDJ fellowship from project 88881.030413/2013-01, program CSF-PVE.This is the author accepted manuscript. The final version is available from EDP Sciences via http://dx.doi.org/10.1051/0004-6361/20162866
Sacral nerve stimulation versus percutaneous tibial nerve stimulation for faecal incontinence: a systematic review and meta-analysis
- …
