792 research outputs found

    Performance of High-volume Fly Ash Self-compacting Concrete Exposed to External Sulfate Attack

    Get PDF
    The high-volume fly ash concrete, HVFAC, could be defined as any concrete mix having fly ash content larger than 50 percent of the total cementitious materials content. Due to the availability of fly ash in large quantities globally with low cost, HVFAC could be considered as a solution for the environmental impact of Portland cements. In this study the durability of two high-volume fly ash self-compacting concrete, HVFASCC, mixes exposed to the effects of two sulfate aggressive solutions was investigated. The fly ash, class F, contents for these mixes were 50 and 60 percent by weight of Portland cement. The external sulfate attack was simulated by submerging the concrete specimens in 5 percent sodium and magnesium sulfate solutions separately for 240 days. Six mixes were produced for this purpose, they were: 2 reference mixes cured in water, 2 mixes submerged in Na2SO4 solution and 2 mixes submerged in MgSO4 solution. The testing program includes: slump flow, V-funnel, L-box, weight change, XRD and the strength tests: compressive, splitting and flexural strengths. The fly ash content has a positive effect on the rheology (workability) of all tested mixtures. In other words, increasing the cement replacement level from 50 to 60 percent has enhanced the filling ability, passing ability, and segregation resistance of the investigated SCC mixes. The test results show that the magnesium solution has the higher harmful effect on all mixes than the sodium solution. The replacements of Portland cement by the assigned percentages of fly ash have significantly increased the resistance of SCC to the external sulfate attack due to lime consuming reaction

    A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation

    Get PDF
    Geopolymer Concrete (GPC) is a new class of concrete that presents a vital improvement in sustainability and the environment, particularly in recycling and alternative construction methods. Geopolymers offer a sustainable, low energy consumption, low carbon footprint, and a 100% substitute for the Portland cement binder for civil infrastructure applications. Furthermore, many aluminosilicate materials can be obtained as by-products of other processes, such as coal combustion or the thermal pulping of wood. In addition, slag and fly ash are necessary to source materials for geopolymer. Therefore, geopolymer is considered a solution for waste management that can minimize greenhouse gas emissions. In this statistical study, the present experimental work and found experimental data were collected from local and international literature and were used to build and validate the statistical models to predict the strength development of Geopolymer concrete with binary and ternary systems of source materials. The main independent variable was R, representing the ratio of SiO2/Al2O3by weight in the source material. The investigated range of R was 1.42–3.6. Nine concrete geopolymer mixes with R in the above range represent the experimental part carried out. The targeted properties were compressive, splitting, and flexural strengths. The experimental results showed that the R ratio significantly influences the mechanical performance of the final product. The compressive strength improved by 82, 86, 93, and 95%, when metakaolin content was partially replaced by fly ash and GGBS by percentages of 30, 70, 72, 90, and 95% for mixes 2, 3, 5, 7, and 8 respectively. Also, when GGBS partially replaced fly ash content by 36% and 100% for mixes 6 and 9, compressive strength improved by 10.6% and 41.8%, respectively, compared to mix4. Furthermore, the statistical study revealed that the R ratio might be utilized to determine geopolymer strength with reasonable accuracy. The built models were developed by linear and non-linear regression analysis using SPSS software, version 25. Doi: 10.28991/CEJ-2022-08-03-04 Full Text: PD

    How the other half lives: CRISPR-Cas's influence on bacteriophages

    Full text link
    CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells used to combat phage and plasmid threats. The host cell adapts by incorporating DNA sequences from invading phages or plasmids into its CRISPR locus as spacers. These spacers are expressed as mobile surveillance RNAs that direct CRISPR-associated (Cas) proteins to protect against subsequent attack by the same phages or plasmids. The threat from mobile genetic elements inevitably shapes the CRISPR loci of archaea and bacteria, and simultaneously the CRISPR-Cas immune system drives evolution of these invaders. Here we highlight our recent work, as well as that of others, that seeks to understand phage mechanisms of CRISPR-Cas evasion and conditions for population coexistence of phages with CRISPR-protected prokaryotes.Comment: 24 pages, 8 figure

    The Extent of Using the Target Costing Technique by Jordanian Industrial Shareholding Companies

    Get PDF
    The current research aims at examining whether or not the Jordanian Industrial Public Corporations use the target costing technique. For this purpose the researchers distributed around 70 questionnaires, while just 52 questionnaires of them are examined. Each questionnaire encompasses 16 questions, whereas 8 of these questions are addressed to all companies; while the remaining questions are addressed to the companies those are used the target costing system. The results reveal that 35% of companies use the target costing system, whether partly 27% or totally 8% and 65% of companies don’t use this system. The study concludes that the major reasons behind not using the target costing system; are due to the lack of target costing knowledge and the management supporting is not enough in additional to the old habits in calculating value. The study recommends Jordanian companies to use the target costing, as it is deemed as an essential part of the management of total cost. Keywords: Target Costing Technique “TCT”, Shareholding Companies, Customer Satisfaction

    Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    Get PDF
    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage.ope

    A 20-year multicentre outcome analysis of salvage mechanical circulatory support for refractory cardiogenic shock after cardiac surgery

    Get PDF
    Abstract Background Refractory post-cardiotomy cardiogenic shock (PCCS) is a relatively rare phenomenon that can lead to rapid multi-organ dysfunction syndrome and is almost invariably fatal without advanced mechanical circulatory support (AMCS), namely extra-corporeal membrane oxygenation (ECMO) or ventricular assist devices (VAD). In this multicentre observational study we retrospectively analyzed the outcomes of salvage venoarterial ECMO (VA ECMO) and VAD for refractory PCCS in the 3 adult cardiothoracic surgery centres in Scotland over a 20-year period. Methods The data was obtained through the Edinburgh, Glasgow and Aberdeen cardiac surgery databases. Our inclusion criteria included any adult patient from April 1995 to April 2015 who had received salvage VA ECMO or VAD for PCCS refractory to intra-aortic balloon pump (IABP) and maximal inotropic support following adult cardiac surgery. Results A total of 27 patients met the inclusion criteria. Age range was 34–83 years (median 51 years). There was a large male predominance (n = 23, 85 %). Overall 23 patients (85 %) received VA ECMO of which 14 (61 %) had central ECMO and 9 (39 %) had peripheral ECMO. Four patients (15 %) were treated with short-term VAD (BiVAD = 1, RVAD = 1 and LVAD = 2). The most common procedure-related complication was major haemorrhage (n = 10). Renal failure requiring renal replacement therapy (n = 7), fatal stroke (n = 5), septic shock (n = 2), and a pseudo-aneurysm at the femoral artery cannulation site (n = 1) were also observed. Overall survival to hospital discharge was 40.7 %. All survivors were NYHA class I-II at 12 months’ follow-up. Conclusion AMCS for refractory PCCS carries a survival benefit and achieves acceptable functional recovery despite a significant complication rate

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Room temperature triplet state spectroscopy of organic semiconductors

    Get PDF
    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is ‘dark’ with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.United States. Dept. of Energy. Center for Excitonics (Award DE-SC0001088

    The Protective Effect of Nitroglycerin, N-Acetyl Cysteine and Metoprolol in CCL4 Induced Animal Model of Acute Liver Injury

    Get PDF
    OBJECTIVE: The current study was designed to determine the hepatoprotective effect of well-known drugs. Nitroglycerin, N-acetyl cysteine and Metoprolol in acute liver injury induced by CCL4. The antioxidant effects of b-blockers, especially carvedilol, have been described by several investigators. However, for metoprolol, the effect is a bit query as there is only one in-vitro study showing a little hepatoprotective effect. Thus, it is worthy to re-study the hepatoprotective effect of metoprolol. AIM: To explore the possible hepatoprotective effect of Nitroglycerin, N-acetyl cysteine and Metoprolol TartrateMATERIAL AND METHODS: The normal serum values of ALP, AST, ALT, TSB and TSP were determined in 35 healthy rabbits allocated to 5 groups before CCL4 induction and at three occasions 24, 72, 120 hrs after induction by CCL4 and treatment with the tested drugs: Nitroglycerin, N-acetyl cysteine and Metoprolol for five successive days.RESULTS: Showed significant decrease in serum levels of ALP, AST, ALT and TSB with a significant increase in TSP level of all the tested drugs measured at 120 hrs compared with the control and their levels measured at 24, 72 hrs.CONCLUSION: All the tested drugs proved in having a hepatoprotective effect when they are given orally to animals. The histopathological sections of the liver tissue supported the real effect of these drugs in the management of ALI
    corecore