250 research outputs found
Embedding According to Al-Zamakhshari in His Interpretation: An Applied Study on Surat Al-Baqarah
Embedding is one of the remarkable Arabic rhetoric methods. It contains brevity and abbreviation, and various rhetorical secrets such as exaggeration, denigration, expanding meanings, etc. Many commentators and scholars have been concerned with demonstrating The Noble Qur’an\u27s illustrative and rhetorical miracle, and one of the most important interpretations concerned with this aspect is Al-Kashshaf’s interpretation by Al-Zamakhshari. Objective: This research aimed to study different implications mentioned by Al-Zamakhshari in the interpretation of Surat Al-Baqarah in his book. In addition, the study aimed to clarify his rhetorical and devise approach. Methodology: The researchers adopted the inductive, then descriptive and analytical approach. Conclusions: In this study, the researchers concluded that Al-Zamakhshari demonstrated in some places the aspects of rhetoric therein, and summarized others in interpreting the verses of Surat Al-Baqarah. Moreover, he inferred the validity of his preference based on the context of the verses and the opinion of well-known grammarians. Recommendations: The researchers recommended and concluded that there is a need for a more comprehensive study to illustrate the embedded strategy which is adopted by Al-Zamakhshari. The major reason is to demonstrate the important aspect of the eloquence of the Noble Quran
Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species
Drivers of genetic diversity in secondary metabolic gene clusters within a fungal speciesFilamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.National Science Foundation (grant
number DEB-1442113). Received by AR. U.S.
National Library of Medicine training grant (grant
number 2T15LM007450). Received by ALL.
Conselho Nacional de Desenvolvimento Cientı´fico e
573 Tecnológico. Northern Portugal Regional
Operational Programme (grant number NORTE-01-
0145-FEDER-000013). Received by FR. Fundação
de Amparo à Pesquisa do 572 Estado de São
Paulo. Received by GHG. National Institutes of
Health (grant number R01 AI065728-01). Received
by NPK. National Science Foundation (grant
number IOS-1401682). Received by JHW. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.info:eu-repo/semantics/publishedVersio
Phenotypic and Functional Characterization of Mesenchymal Stem/Multipotent Stromal Cells from Decidua Basalis
Mesenchymal stem cell (MSC) therapies for the treatment of diseases associated with inflammation and oxidative stress employ primarily bone marrow MSCs (BMMSCs) and other MSC types such as MSC from the chorionic villi of human term placentae (pMSCs). These MSCs are not derived from microenvironments associated with inflammation and oxidative stress, unlike MSCs from the decidua basalis of the human term placenta (DBMSCs). DBMSCs were isolated and then extensively characterized. Differentiation of DBMSCs into three mesenchymal lineages (adipocytes, osteocytes, and chondrocytes) was performed. Real-time polymerase chain reaction (PCR) and flow cytometry techniques were also used to characterize the gene and protein expression profiles of DBMSCs, respectively. In addition, sandwich enzyme-linked immunosorbent assay (ELISA) was performed to detect proteins secreted by DBMSCs. Finally, the migration and proliferation abilities of DBMSCs were also determined. DBMSCs were positive for MSC markers and HLA-ABC. DBMSCs were negative for hematopoietic and endothelial markers, costimulatory molecules, and HLA-DR. Functionally, DBMSCs differentiated into three mesenchymal lineages, proliferated, and migrated in response to a number of stimuli. Most importantly, these cells express and secrete a distinct combination of cytokines, growth factors, and immune molecules that reflect their unique microenvironment. Therefore, DBMSCs could be attractive, alternative candidates for MSC-based therapies that treat diseases associated with inflammation and oxidative stress
Cyclin dependent kinase inhibitor 3 (CDKN3) upregulation is associated with unfavorable prognosis in clear cell renal cell carcinoma and shapes tumor immune microenvironment: A bioinformatics analysis
Cell cycle regulatory proteins plays a pivotal role in the development and progression of many human malignancies. Identification of their biological functions as well as their prognostic utility presents an active field of research. As a continuation of the ongoing efforts to elucidate the molecular characteristics of clear cell renal cell carcinoma (ccRCC); we present a comprehensive bioinformatics study targeting the prognostic and mechanistic role of cyclin-dependent kinase inhibitor 3 (CDKN3) in ccRCC. The ccRCC cohort from the Cancer Genome Atlas Program was accessed through the UCSC Xena browser to obtain CDKN3 mRNA expression data and their corresponding clinicopathological variables. The independent prognostic signature of CDKN3 was evaluated using univariate and multivariate Cox logistic regression analysis. Gene set enrichment analysis and co-expression gene functional annotations were used to discern CDKN3-related altered molecular pathways. The tumor immune microenvironment was evaluated using TIMER 2.0 and gene expression profiling interactive analysis. CDKN3 upregulation is associated with shortened overall survival (hazard ratio [HR] = 2.325, 95% confident interval [CI]: 1.703–3.173, P < .0001) in the Cancer Genome Atlas Program ccRCC cohort. Univariate (HR: 0.426, 95% CI: 0.316–0.576, P < .001) and multivariate (HR: 0.560, 95% CI: 0.409–0.766, P < .001) Cox logistic regression analyses indicate that CDKN3 is an independent prognostic variable of the overall survival. High CDKN3 expression is associated with enrichment within the following pathways including allograph rejection, epithelial–mesenchymal transition, mitotic spindle, inflammatory response, IL-6/JAK/STAT3 signaling, spermatogenesis, TNF-α signaling via NF-kB pathway, complement activation, KRAS signaling, and INF-γ signaling. CDKN3 is also associated with significant infiltration of a wide spectrum of immune cells and correlates remarkably with immune-related genes. CDKN3 is a poor prognostic biomarker in ccRCC that alters many molecular pathways and impacts the tumor immune microenvironment.Scopu
Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis
Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues
National Outbreak of Salmonella Serotype Saintpaul Infections: Importance of Texas Restaurant Investigations in Implicating Jalapeño Peppers
BACKGROUND: In May 2008, PulseNet detected a multistate outbreak of Salmonella enterica serotype Saintpaul infections. Initial investigations identified an epidemiologic association between illness and consumption of raw tomatoes, yet cases continued. In mid-June, we investigated two clusters of outbreak strain infections in Texas among patrons of Restaurant A and two establishments of Restaurant Chain B to determine the outbreak's source. METHODOLOGY/PRINCIPAL FINDINGS: We conducted independent case-control studies of Restaurant A and B patrons. Patients were matched to well controls by meal date. We conducted restaurant environmental investigations and traced the origin of implicated products. Forty-seven case-patients and 40 controls were enrolled in the Restaurant A study. Thirty case-patients and 31 controls were enrolled in the Restaurant Chain B study. In both studies, illness was independently associated with only one menu item, fresh salsa (Restaurant A: matched odds ratio [mOR], 37; 95% confidence interval [CI], 7.2-386; Restaurant B: mOR, 13; 95% CI 1.3-infinity). The only ingredient in common between the two salsas was raw jalapeño peppers. Cultures of jalapeño peppers collected from an importer that supplied Restaurant Chain B and serrano peppers and irrigation water from a Mexican farm that supplied that importer with jalapeño and serrano peppers grew the outbreak strain. CONCLUSIONS/SIGNIFICANCE: Jalapeño peppers, contaminated before arrival at the restaurants and served in uncooked fresh salsas, were the source of these infections. Our investigations, critical in understanding the broader multistate outbreak, exemplify an effective approach to investigating large foodborne outbreaks. Additional measures are needed to reduce produce contamination
Bone Marrow-Derived Progenitor Cells Augment Venous Remodeling in a Mouse Dorsal Skinfold Chamber Model
The delivery of bone marrow-derived cells (BMDCs) has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM) and Lin−/Sca-1+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif) ligand 2 (CXCL2) and interferon gamma (IFNγ) that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), and platelet derived growth factor-BB (PDGF-BB) compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment
Efficacy and safety-in analysis of short-course radiation followed by mFOLFOX-6 plus avelumab for locally advanced rectal adenocarcinoma
Background: Neoadjuvant chemotherapy and short-course radiotherapy followed by resection has been gaining recognition in the treatment of rectal cancer. Avelumab is a fully human immunoglobulin that binds Programmed Death-Ligand 1 (PD-L1) and prevents the suppression of the cytotoxic T cell immune response. This phase II trial evaluates the safety and pathologic response rate of short-course radiation followed by 6 cycles of mFOLFOX6 with avelumab in patients with locally advanced rectal cancer (LARC). Methods: This study is prospective single-arm, multicenter phase II trial adopting Simon's two-stage. Short-course radiation is given over 5 fractions to a total dose of 25 Gy. mFOLFOX6 plus avelumab (10 mg/kg) are given every 2 weeks for 6 cycles. Total mesorectal excision is performed 3-4 weeks after the last cycle of avelumab. Follow up after surgery is done every 3 months to a total of 36 months. Adverse event data collection is recorded at every visit. Results: 13 out of 44 patients with LARC were enrolled in the first stage of the study (30% from total sample size). All patients met the inclusion criteria and received the full short-course radiation course followed by 6 cycles of mFOLFOX6 plus avelumab. 12 out of the 13 patients completed TME while one patient had progression of disease and was dropped out of the study. The sample consisted of 9 (69%) males and 4 (31%) females with median age of 62 (33-73) years. The first interim analysis revealed that 3 (25%) patients achieved pathologic complete response (pCR) (tumor regression grade, TRG 0) out of 12. While 3 (25%) patients had near pCR with TRG 1. In total, 6 out of 12 patients (50%) had a major pathologic response. All patients were found to be MMR proficient. The protocol regimen was well tolerated with no serious adverse events of grade 4 reported. Conclusion: In patients with LARC, neoadjuvant radiation followed by mFOLFOX6 with avelumab is safe with a promising pathologic response rate. Trial Registration Number and Date of Registration ClinicalTrials.gov NCT03503630, April 20, 2018. https://clinicaltrials.gov/ct2/show/NCT03503630term=NCT03503630draw=2rank=1. © 2020 The Author(s)
A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia
Short-course radiation followed by mFOLFOX-6 plus avelumab for locally-advanced rectal adenocarcinoma
Background: Current standard practice for locally advanced rectal cancer (LARC) entails a multidisciplinary approach that includes preoperative chemoradiotherapy, followed by total mesorectal excision, and then adjuvant chemotherapy. The latter has been accompanied by low compliance rates and no survival benefit in phase III randomized trials, so the strategy of administering neoadjuvant, rather than adjuvant, chemotherapy has been adapted by many trials, with improvement in pathologic complete response. Induction chemotherapy with oxaliplatin has been shown to have increased efficacy in rectal cancer, while short-course radiation therapy with consolidation chemotherapy increased short-term overall survival rate and decreased toxicity levels, making it cheaper and more convenient than long-course radiation therapy. This led to recognition of total neoadjuvant therapy as a valid treatment approach in many guidelines despite limited available survival data. With the upregulation (PDL-1) expression in rectal tumors after radiotherapy and the increased use of in malignant melanoma, the novel approach of combining immunotherapy with chemotherapy after radiation may have a role in further increasing pCR and improving overall outcomes in rectal cancer. Methods: The study is an open label single arm multi- center phase II trial. Forty-four recruited LARC patients will receive 5Gy x 5fractions of SCRT, followed by 6 cycles of mFOLFOX-6 plus avelumab, before TME is performed. The hypothesis is that the addition of avelumab to mFOLFOX-6, administered following SCRT, will improve pCR and overall outcomes. The primary outcome measure is the proportion of patients who achieve a pCR, defined as no viable tumor cells on the excised specimen. Secondary objectives are to evaluate 3-year progression-free survival, tumor response to treatment (tumor regression grades 0 & 1), density of tumor-infiltrating lymphocytes, correlation of baseline Immunoscore with pCR rates and changes in PD-L1 expression. Discussion: Recent studies show an increase in PD-L1 expression and density of CD8+ TILs after CRT in rectal cancer patients, implying a potential role for combinatory strategies using PD-L1- and programmed-death- 1 inhibiting drugs. We aim through this study to evaluate pCR following SCRT, followed by mFOLFOX-6 with avelumab, and then TME procedure in patients with LARC. Trial registration: Trial Registration Number and Date of Registration: ClinicalTrials.gov NCT03503630, April 20, 2018. © 2020 The Author(s)
- …
