773 research outputs found

    Tilting mechanisms in domino faults of the Sierra de San Miguelito, central Mexico

    Get PDF
    A system of normal faults with similar strike that bound rotated blocks in the Sierra de San Miguelito, central Mexico, was studied to determine the genesis of rotation and to estimate the extensional strain. We show that rigid-body rotation was not the main deformation mechanism of the domino faults in this region. We propose vertical or inclined shear accommodated by slip on minor faults as the mechanism for strain in the blocks. In order to test quantitatively the amount of strain, we calculated the extension assuming vertical shear obtaining ca. ev ~0.20. This value is in good agreement with extensions previously reported for the Mesa Central of México. The bed extension required in this model reaches ca. 33% of the total horizontal extension (i. e. ebed =0.34 ev). Assuming self-similar geometry for fault displacements, it is shown that bed strain required in shear models can be liberated by the small faults. If the strain is calculated using the rigid-body rotation model, the lengthening is underestimated by up to 9%. This case study shows that shear models could be applied in volcanic zones

    Continuous Infusion of Pantoprazole with Octreotide Does Not Improve Management of Variceal Hemorrhage

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90065/1/phco.29.3.248.pd

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    Get PDF
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work

    Embodied uncertainty: living with complexity and natural hazards

    Get PDF
    In this paper, we examine the concept of embodied uncertainty by exploring multiple dimensions of uncertainty in the context of risks associated with extreme natural hazards. We highlight a need for greater recognition, particularly by disaster management and response agencies, of uncertainty as a subjective experience for those living at risk. Embodied uncertainty is distinguished from objective uncertainty by the nature of its internalisation at the individual level, where it is subjective, felt and directly experienced. This approach provides a conceptual pathway that sharpens knowledge of the processes that shape how individuals and communities interpret and contextualise risk. The ways in which individual characteristics, social identities and lived experiences shape interpretations of risk are explored by considering embodied uncertainty in four contexts: social identities and trauma, the co-production of knowledge, institutional structures and policy and long-term lived experiences. We conclude by outlining the opportunities that this approach presents, and provide recommendations for further research on how the concept of embodied uncertainty can aid decision-making and the management of risks in the context of extreme natural hazards

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    Get PDF
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work

    A language for dealing with emotions in product innovation: a proposal

    Get PDF
    The knowledge of emotions is essential in all designs created for the customer (e.g. product design, service design, graphic design, food design). The complexity of designing a product-service system to provoke intended emotions involves the need to formulate a shareable, natural, and unambiguous language has emerged. This paper presents a language proposal to discuss emotions in product innovation, which is composed of three key concepts: the human-product emotional interactions, a framework of positive emotions and the emotional-jobs-to-be-done by a product. An exploratory survey with an international community of designers has been implemented in order to review the acceptance and understanding of this framework; the results of the exploratory survey have been the basis of the final refinement of the proposed language, which consists of 1) three categories of human-product emotional interaction, 2) 19 positive emotion types, and 3) 19 emotional jobs-to-done

    Emotional design: the development of a process to envision emotion-centric new product ideas

    Get PDF
    There is ample evidence, in many sectors, of the crucial importance of the emotional experiences in the interaction between users and products. Generating products with richer and significant emotional features is a complex challenge. In order to better face this challenge, professionals responsible for designing and developing new products could be facilitated with techniques and tools to understand emotions and to convey specific emotions in the new products. This paper presents the development of a process to support product design teams to envision emotion-focused new product ideas - Emotion-Driven Innovation (E-DI). We have adopted the process research methodology proposed by Platts, which encompasses four main steps: 1) state-of-the-art review, 2) process creation, 3) process development, and 4) process validation. This paper presents the results of the three first steps. The state-of-the-art literature review has been the foundation of the process creation step, which resulted in a three-phase workshop-based process: Emotion Knowledge Acquisition, Emotion Goal Definition, and Idea Generation. In the third step of the research methodology, the feasibility, usability, and utility have been tested through four studies which have involved master design students from Portugal and Italy. The results of these four tests show that Emotion-Driven Innovation process supports designers 1) to identify the occurrence of emotions in certain category of products present in the market, 2) to apply this information to make strategic decisions when defining the emotional intentions for the new product, and 3) to focus their creative thinking to develop strong and meaningful emotion-centric ideas

    Multicenter, International Study of MIC/ MEC Distributions for definition of epidemiological cutoff values for sporothrix species identified by molecular methods

    Get PDF
    Clinical and Laboratory Standards Institute (CLSI) conditions for testing the susceptibilities of pathogenic Sporothrix species to antifungal agents are based on a collaborative study that evaluated five clinically relevant isolates of Sporothrix schenckii sensu lato and some antifungal agents. With the advent of molecular identification, there are two basic needs: to confirm the suitability of these testing conditions for all agents and Sporothrix species and to establish species-specific epidemiologic cutoff values (ECVs) or breakpoints (BPs) for the species. We collected available CLSI MICs/minimal effective concentrations (MECs) of amphotericin B, five triazoles, terbinafine, flucytosine, and caspofungin for 301 Sporothrix schenckii sensu stricto, 486 S. brasiliensis, 75 S. globosa, and 13 S. mexicana molecularly identified isolates. Data were obtained in 17 independent laboratories (Australia, Europe, India, South Africa, and South and North America) using conidial inoculum suspensions and 48 to 72 h of incubation at 35°C. Sufficient and suitable data (modal MICs within 2-fold concentrations) allowed the proposal of the following ECVs for S. schenckii and S. brasiliensis, respectively: amphotericin B, 4 and 4 /ml; itraconazole, 2 and 2 μg/ml; posaconazole, 2 and 2 μg/ml; and voriconazole, 64 and 32 μg/ml. Ketoconazole and terbinafine ECVs for S. brasiliensis were 2 and 0.12 μg/ml, respectively. Insufficient or unsuitable data precluded the calculation of ketoconazole and terbinafine (or any other antifungal agent) ECVs for S. schenckii, as well as ECVs for S. globosa and S. mexicana. These ECVs could aid the clinician in identifying potentially resistant isolates (non-wild type) less likely to respond to therapy.A. Espinel-Ingroff, D. P. B. Abreu, R. Almeida-Paes, R. S. N. Brilhante, A. Chakrabarti, A. Chowdhary, F. Hagen, S. Córdoba, G. M. Gonzalez, N. P. Govender, J. Guarro, E. M. Johnson, S. E. Kidd, S. A. Pereira, A. M. Rodrigues, S. Rozental, M. W. Szeszs, R. Ballesté Alaniz, A. Bonifaz, L. X. Bonfietti, L. P. Borba-Santos, J. Capilla, A. L. Colombo, M. Dolande, M. G. Isla, M. S. C. Melhem, A. C. Mesa-Arango, M. M. E. Oliveira, M. M. Panizo, Z. Pires de Camargo, R. M. Zancope-Oliveira, J. F. Meis, J. Turnidge

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Learning Decision Trees Recurrently Through Communication

    Get PDF
    corecore