11,878 research outputs found
Fermionic Ising Glasses with BCS Pairing Interaction. Tricritical Behaviour
We have examined the role of the BCS pairing mechanism in the formation of
the magnetic moment and henceforth a spin glass (SG) phase by studying a
fermionic Sherrington-Kirkpatrick model with a local BCS coupling between the
fermions. This model is obtained by using perturbation theory to trace out the
conduction electrons degrees of freedom in conventional superconducting alloys.
The model is formulated in the path integral formalism where the spin operators
are represented by bilinear combinations of Grassmann fields and it reduces to
a single site problem that can be solved within the static approximation with a
replica symmetric Ansatz. We argue that this is a valid procedure for values of
temperature above the de Almeida-Thouless instability line. The phase diagram
in the T-g plane, where g is the strength of the pairing interaction, for fixed
variance J^2/N of the random couplings J_{ij}, exhibits three regions: a normal
paramagnetic (NP) phase, a spin glass (SG) phase and a pairing (PAIR) phase
where there is formation of local pairs.The NP and PAIR phases are separated by
a second order transition line g=g_{c}(T) that ends at a tricritical point
T_{3}=0.9807J, g_{3}=5,8843J, from where it becomes a first order transition
line that meets the line of second order transitions at T_{c}=0.9570J that
separates the NP and the SG phases. For T<T_{c} the SG phase is separated from
the PAIR phase by a line of first order transitions.
These results agree qualitatively with experimental data in
Gd_{x}Th_{1-x}RU_{2}.Comment: 26 pages, 5 figures, to appear in The European Physical Journal
Charged Particles and the Electro-Magnetic Field in Non-Inertial Frames of Minkowski Spacetime: I. Admissible 3+1 Splittings of Minkowski Spacetime and the Non-Inertial Rest Frames
By using the 3+1 point of view and parametrized Minkowski theories we develop
the theory of {\it non-inertial} frames in Minkowski space-time. The transition
from a non-inertial frame to another one is a gauge transformation connecting
the respective notions of instantaneous 3-space (clock synchronization
convention) and of the 3-coordinates inside them. As a particular case we get
the extension of the inertial rest-frame instant form of dynamics to the
non-inertial rest-frame one. We show that every isolated system can be
described as an external decoupled non-covariant canonical center of mass
(described by frozen Jacobi data) carrying a pole-dipole structure: the
invariant mass and an effective spin. Moreover we identify the constraints
eliminating the internal 3-center of mass inside the instantaneous 3-spaces. In
the case of the isolated system of positive-energy scalar particles with
Grassmann-valued electric charges plus the electro-magnetic field we obtain
both Maxwell equations and their Hamiltonian description in non-inertial
frames. Then by means of a non-covariant decomposition we define the
non-inertial radiation gauge and we find the form of the non-covariant Coulomb
potential. We identify the coordinate-dependent relativistic inertial
potentials and we show that they have the correct Newtonian limit. In the
second paper we will study properties of Maxwell equations in non-inertial
frames like the wrap-up effect and the Faraday rotation in astrophysics. Also
the 3+1 description without coordinate-singularities of the rotating disk and
the Sagnac effect will be given, with added comments on pulsar magnetosphere
and on a relativistic extension of the Earth-fixed coordinate system.Comment: This paper and the second one are an adaptation of arXiv 0812.3057
for publication on Int.J.Geom. Methods in Modern Phys. 77
Spin glass freezing in Kondo lattice compounds
It is presented a theory that describes a spin glass phase at finite
temperatures in Kondo lattice systems with an additional RKKY interaction
represented by long range, random couplings among localized spins like in the
Sherrington- Kirkpatrick (SK) spin glass model. The problem is studied within
the functional integral formalism where the spin operators are represented by
bilinear combinations of fermionic (anticommuting) Grassmann variables. The
Kondo and spin glass transitions are both described with the mean field like
static ansatz that reproduces good results in the two well known limits. At
high temperatures and low values of the Kondo coupling there is a paramagnetic
(disordered) phase with vanishing Kondo and spin glass order parameters. By
lowering the temperature a second order transition line is found at Tsg to a
spin glass phase. For larger values of the Kondo coupling there is a second
order transition line at roughly Tk to a Kondo ordered state. For T<Tsg the
transition between the Kondo and spin glass phases becomes first order.Comment: 21 pages, 1 figure, to appear on Phys. Rev.
Aging dynamics of ferromagnetic and reentrant spin glass phases in stage-2 CuCCl graphite intercalation compound
Aging dynamics of a reentrant ferromagnet stage-2
CuCoCl graphite intercalation compound has been studied
using DC magnetic susceptibility. This compound undergoes successive
transitions at the transition temperatures ( K) and
( K). The relaxation rate exhibits a
characteristic peak at below . The peak time as a
function of temperature shows a local maximum around 5.5 K, reflecting a
frustrated nature of the ferromagnetic phase. It drastically increases with
decreasing temperature below . The spin configuration imprinted at the
stop and wait process at a stop temperature () during the
field-cooled aging protocol, becomes frozen on further cooling. On reheating,
the memory of the aging at is retrieved as an anomaly of the
thermoremnant magnetization at . These results indicate the occurrence
of the aging phenomena in the ferromagnetic phase () as well
as in the reentrant spin glass phase ().Comment: 9 pages, 9 figures; submitted to Physical Review
Spin Glass and antiferromagnetism in Kondo lattice disordered systems
The competition between spin glass (SG), antiferromagnetism (AF) and Kondo
effect is studied here in a model which consists of two Kondo sublattices with
a gaussian random interaction between spins in differents sublattices with an
antiferromagnetic mean Jo and standard deviation J. In the present approach
there is no hopping of the conduction electrons between the sublattices and
only spins in different sublattices can interact. The problem is formulated in
the path integral formalism where the spin operators are expressed as bilinear
combinations of Grassmann fields which can be solved at mean field level within
the static approximation and the replica symmetry ansatz. The obtained phase
diagram shows the sequence of phases SG, AF and Kondo state for increasing
Kondo coupling. This sequence agrees qualitatively with experimental data of
the Ce_{2} Au_{1-x} Co_{x} Si_{3} compound.Comment: 7 pages, 1 figure, submitted to EPJ
Descriptive and spatial epidemiology of bovine cysticercosis in North-Eastern Spain (Catalonia).
From March 2005 to December 2007, 284 animals from 67 cattle farms (24 dairy and 43 beef) affected by bovine cysticercosis were detected in the region of Catalonia (North-Eastern Spain). Dairy farms were almost twice more likely to be affected than beef farms (OR=1.79, 95% CI=1.08-2.96, p<0.05), and infected premises have a statistically significant (p<0.05) larger number of animals when compared to uninfected farms in Catalonia. The geographical distribution of the infected farms was evaluated and two statistically significant clusters were identified. The most likely cluster was located in the western part of the study region, with 8 out of 10 farms infected. Epidemiological investigations revealed that the 8 farms belonged to the same company. The secondary cluster was located in Eastern Catalonia with 12 infected farms out of 167 cattle farms. No epidemiological links were found among the 12 infected premises. A questionnaire, based on the EFSA risk assessment, was used to assess the most likely route of introduction into each affected farm. Water supply for animals was the route with the highest score in 41.8% of the cases
Disentangling density and temperature effects in the viscous slowing down of glassforming liquids
We present a consistent picture of the respective role of density and
temperature in the viscous slowing down of glassforming liquids and polymers.
Specifically, based in part upon a new analysis of simulation and experimental
data on liquid ortho-terphenyl, we conclude that a zeroth-order description of
the approach to the glass transition should be formulated in terms of a
temperature-driven super-Arrhenius activated behavior rather than a
density-driven congestion or jamming phenomenon. The density plays a role at a
quantitative level, but its effect on the viscosity and the structural
relaxation time can be simply described via a single parameter, an effective
interaction energy that is characteristic of the high temperature liquid
regime; as a result, density does not affect the ``fragility'' of the
glassforming system.Comment: RevTeX4, 8 pages, 8 eps figure
Influence of pH on mechanical relaxations in high solids lm-pectin preparations
The influence of pH on the mechanical relaxation of LM-pectin in the presence of co-solute has been investigated by means of differential scanning calorimetry, ζ-potential measurements and small deformation dynamic oscillation in shear. pH was found to affect the conformational properties of the polyelectrolyte altering its structural behaviour. Cooling scans in the vicinity of the glass transition region revealed a remarkable change in the viscoelastic functions as the polyelectrolyte rearranges from extended (neutral pH) to compact conformations (acidic pH). This conformational rearrangement was experimentally observed to result in early vitrification at neutral pH values where dissociation of galacturonic acid residues takes place. Time-temperature superposition of the mechanical shift factors and theoretical modeling utilizing WLF kinetics confirmed the accelerated kinetics of glass transition in the extended pectin conformation at neutral pH. Determination of the relaxation spectra of the samples using spectral analysis of the master curves revealed that the relaxation of macromolecules occurs within ~0.1 s regardless of the solvent pH
Colorimetry technique for scalable characterization of suspended graphene
Previous statistical studies on the mechanical properties of
chemical-vapor-deposited (CVD) suspended graphene membranes have been performed
by means of measuring individual devices or with techniques that affect the
material. Here, we present a colorimetry technique as a parallel, non-invasive,
and affordable way of characterizing suspended graphene devices. We exploit
Newton rings interference patterns to study the deformation of a double-layer
graphene drum 13.2 micrometer in diameter when a pressure step is applied. By
studying the time evolution of the deformation, we find that filling the drum
cavity with air is 2-5 times slower than when it is purged
A Method to Find Community Structures Based on Information Centrality
Community structures are an important feature of many social, biological and
technological networks. Here we study a variation on the method for detecting
such communities proposed by Girvan and Newman and based on the idea of using
centrality measures to define the community boundaries (M. Girvan and M. E. J.
Newman, Community structure in social and biological networks Proc. Natl. Acad.
Sci. USA 99, 7821-7826 (2002)). We develop an algorithm of hierarchical
clustering that consists in finding and removing iteratively the edge with the
highest information centrality. We test the algorithm on computer generated and
real-world networks whose community structure is already known or has been
studied by means of other methods. We show that our algorithm, although it runs
to completion in a time O(n^4), is very effective especially when the
communities are very mixed and hardly detectable by the other methods.Comment: 13 pages, 13 figures. Final version accepted for publication in
Physical Review
- …
