27 research outputs found
Real-time flow simulation of indoor environments using lattice Boltzmann method
A novel lattice Boltzmann method (LBM) based 3D computational fluid dynamics (CFD) technique has been implemented on the graphics processing unit (GPU) for the purpose of simulating the indoor environment in real-time. We study the time evolution of the turbulent airflow and temperature inside a test chamber and in a simple model of a four-bed hospital room. The predicted results from LBM are compared with traditional CFD based large eddy simulations (LES). Reasonable agreement between LBM results and LES method is observed with significantly faster computational times
The linearized pressure Poisson equation for global instability analysis of incompressible flows
Zweidimensionale Strömungsmuster in zweiseitig angetriebenen Rechteckbehältern mittels eines Finite-Volumen-Verfahrens
Finite difference and cubic interpolated profile lattice boltzmann method for prediction of two-dimensional lid-driven shallow cavity flow
In this paper, two-dimensional lid-driven cavity flow phenomena at steady state were simulated using two different scales of numerical method: the finite difference solution to the Navier–Stokes equation and the cubic interpolated pseudo-particle lattice Boltzmann method. The aspect ratio of cavity was set at 1, 2/3, 1/2 and 1/3 and the Reynolds number of 100, 400 and 1,000 for every simulation condition. The results were presented in terms of the location of the center of main vortex, the streamline plots and the velocity profiles at vertical and horizontal midsections. In this study, it is found that at the simulation of Reynolds numbers 100 and 400, both methods demonstrate a good agreement with each other; however, small discrepancies appeared for the simulation at the Reynolds number of 1,000. We also found that the number, size and formation of vortices strongly depend on the Reynolds number. The effect of the aspect ratio on the fluid flow behavior is also presented
Characterization of the three-dimensional instability in a lid-driven cavity by an adjoint based analysis
In this paper we investigate the three-dimensional stability of the 2D flow generated in a cavity by the motion of two facing walls. An adjoint-based analysis of the most unstable global mode will be performed in order to localize the core of the instability
