3,025 research outputs found
A gravitational wave window on extra dimensions
We report on the possibility of detecting a submillimetre-sized extra
dimension by observing gravitational waves (GWs) emitted by pointlike objects
orbiting a braneworld black hole. Matter in the `visible' universe can generate
a discrete spectrum of high frequency GWs with amplitudes moderately weaker
than the predictions of general relativity (GR), while GW signals generated by
matter on a `shadow' brane hidden in the bulk are potentially strong enough to
be detected using current technology. We know of no other astrophysical
phenomena that produces GWs with a similar spectrum, which stresses the need to
develop detectors capable of measuring this high-frequency signature of large
extra dimensions.Comment: 9 pages, 5 figure
Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries
The accuracy of time-domain solutions of the inhomogeneous Teukolsky equation
is improved significantly. Comparing energy fluxes in gravitational waves with
highly accurate frequency-domain results for circular equatorial orbits in
Schwarzschild and Kerr, we find agreement to within 1% or better, which we
believe can be even further improved. We apply our method to orbits for which
frequency-domain calculations have a relative disadvantage, specifically
high-eccentricity (elliptical and parabolic) "zoom-whirl" orbits, and find the
energy fluxes, waveforms, and characteristic strain in gravitational waves.Comment: 6 pages, 9 figures, 2 tables; Changes: some errors corrected.
Comparison with Frequency-domain now done in stronger fiel
Age estimation by tooth/pulp ratio in canines by peri-apical X-rays: reliability in age determination of Spanish and Italian medieval skeletal remains
Estimation of age at death is an unavoidable step in the process of human identification, both in forensic
practice and in the anthropological and palaeopathological study of skeletal remains. In several cases, in
which medical or demographic records are completely lacking, a reliable estimation of the age at death
becomes very important. Skeletal remains from archaeological contexts suffer from several biasing
factors such as post-mortem changes, taphonomy and various burial practices depending on age, sex and
social status of the deceased persons.
Currently, anthropological methods of age determination reveal several possibilities of inaccuracy. Of
all the body parts used in age estimation, teeth are the least affected by any taphonomic process.
Although there are many dental methods for age at death estimation, some of them are very complex
and/or destructive and they are not normally used in anthropology. However, study of the apposition of
secondary dentine by examining peri-apical X-rays of canines is beginning to supply very interesting
results.
The aim of this work was to test Cameriere\u2019s method on a large sample of historical subjects from
several cemeteries in Spain and Italy. The Spanish sample belongs to the Medieval cemetery of La Torrecilla
(Arenas del Rey, Granada) and is housed in the Laboratory of Anthropology, Faculty of Medicine,
University of Granada. The Italian samples come from the Medieval cemeteries of Comacchio (Ferrara)
and Castel S. Pietro (Bologna).
In order to test the reliability of Cameriere\u2019s method, age estimations of canines were compared with
the mean ranges of age of the most commonly applied anthropological methods such as tooth wear
changes in the pubic symphysis or the metamorphosis of the auricular surface of the ilium. Tests on these
Middle Ages cemeteries produced satisfactory results, indicating that Cameriere\u2019s method is a reliable
tool in determining age at death in skeletal remains of archaeological context
Structure of the alexithymic brain:A parametric coordinate-based meta-analysis
Alexithymia refers to deficiencies in identifying and expressing emotions. This might be related to changes in structural brain volumes, but its neuroanatomical basis remains uncertain as studies have shown heterogeneous findings. Therefore, we conducted a parametric coordinate-based meta-analysis. We identified seventeen structural neuroimaging studies (including a total of 2586 individuals with different levels of alexithymia) investigating the association between gray matter volume and alexithymia. Volumes of the left insula, left amygdala, orbital frontal cortex and striatum were consistently smaller in people with high levels of alexithymia. These areas are important for emotion perception and emotional experience. Smaller volumes in these areas might lead to deficiencies in appropriately identifying and expressing emotions. These findings provide the first quantitative integration of results pertaining to the structural neuroanatomical basis of alexithymia
Black Hole Spectroscopy: Testing General Relativity through Gravitational Wave Observations
Assuming that general relativity is the correct theory of gravity in the
strong field limit, can gravitational wave observations distinguish between
black hole and other compact object sources? Alternatively, can gravitational
wave observations provide a test of one of the fundamental predictions of
general relativity? Here we describe a definitive test of the hypothesis that
observations of damped, sinusoidal gravitational waves originated from a black
hole or, alternatively, that nature respects the general relativistic no-hair
theorem. For astrophysical black holes, which have a negligible charge-to-mass
ratio, the black hole quasi-normal mode spectrum is characterized entirely by
the black hole mass and angular momentum and is unique to black holes. In a
different theory of gravity, or if the observed radiation arises from a
different source (e.g., a neutron star, strange matter or boson star), the
spectrum will be inconsistent with that predicted for general relativistic
black holes. We give a statistical characterization of the consistency between
the noisy observation and the theoretical predictions of general relativity,
together with a numerical example.Comment: 19 pages, 7 figure
Differences in transcription between free-living and CO_2-activated third-stage larvae of Haemonchus contortus
Background:
The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this gastric nematode is enclosed in a cuticle (sheath) and, once ingested with herbage by the host, undergoes an exsheathment process that marks the transition from the free-living (L3) to the parasitic (xL3) stage. This study explored changes in gene transcription associated with this transition and predicted, based on comparative analysis, functional roles for key transcripts in the metabolic pathways linked to larval development.
Results:
Totals of 101,305 (L3) and 105,553 (xL3) expressed sequence tags (ESTs) were determined using 454 sequencing technology, and then assembled and annotated; the most abundant transcripts encoded transthyretin-like, calcium-binding EF-hand, NAD(P)-binding and nucleotide-binding proteins as well as homologues of Ancylostoma-secreted proteins (ASPs). Using an in silico-subtractive analysis, 560 and 685 sequences were shown to be uniquely represented in the L3 and xL3 stages, respectively; the transcripts encoded ribosomal proteins, collagens and elongation factors (in L3), and mainly peptidases and other enzymes of amino acid catabolism (in xL3). Caenorhabditis elegans orthologues of transcripts that were uniquely transcribed in each L3 and xL3 were predicted to interact with a total of 535 other genes, all of which were involved in embryonic development.
Conclusion:
The present study indicated that some key transcriptional alterations taking place during the transition from the L3 to the xL3 stage of H. contortus involve genes predicted to be linked to the development of neuronal tissue (L3 and xL3), formation of the cuticle (L3) and digestion of host haemoglobin (xL3). Future efforts using next-generation sequencing and bioinformatic technologies should provide the efficiency and depth of coverage required for the determination of the complete transcriptomes of different developmental stages and/or tissues of H. contortus as well as the genome of this important parasitic nematode. Such advances should lead to a significantly improved understanding of the molecular biology of H. contortus and, from an applied perspective, to novel methods of intervention
Extreme Mass Ratio Inspirals: LISA's unique probe of black hole gravity
In this review article I attempt to summarise past and present-ongoing-work
on the problem of the inspiral of a small body in the gravitational field of a
much more massive Kerr black hole. Such extreme mass ratio systems, expected to
occur in galactic nuclei, will constitute prime sources of gravitational
radiation for the future LISA gravitational radiation detector. The article's
main goal is to provide a survey of basic celestial mechanics in Kerr spacetime
and calculations of gravitational waveforms and backreaction on the small
body's orbital motion, based on the traditional `flux-balance' method and the
Teukolsky black hole perturbation formalism.Comment: Invited review article, 45 pages, 23 figure
Gravitational waveforms from a point particle orbiting a Schwarzschild black hole
We numerically solve the inhomogeneous Zerilli-Moncrief and Regge-Wheeler
equations in the time domain. We obtain the gravitational waveforms produced by
a point-particle of mass traveling around a Schwarzschild black hole of
mass M on arbitrary bound and unbound orbits. Fluxes of energy and angular
momentum at infinity and the event horizon are also calculated. Results for
circular orbits, selected cases of eccentric orbits, and parabolic orbits are
presented. The numerical results from the time-domain code indicate that, for
all three types of orbital motion, black hole absorption contributes less than
1% of the total flux, so long as the orbital radius r_p(t) satisfies r_p(t)> 5M
at all times.Comment: revtex4, 24 pages, 23 figures, 3 tables, submitted to PR
Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina.
The objective of this work is to develop subconjunctivally implantable, biodegradable hydrogels for sustained release of intact insulin to the retina to prevent and treat retinal neurovascular degeneration such as diabetic retinopathy. The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide (NIPAAm) monomer and a dextran macromer containing multiple hydrolytically degradable oligolactate-(2-hydroxyetheyl methacrylate) units (Dex-lactateHEMA) in 25:75 (v:v) ethanol:water mixture solvent. Insulin is loaded into the hydrogels during the synthesis process with loading efficiency up to 98%. The hydrogels can release biologically active insulin in vitro for at least one week and the release kinetics can be modulated by varying the ratio between NIPAAm and Dex-lactateHEMA and altering the physical size of the hydrogels. The hydrogels are not toxic to R28 retinal neuron cells in culture medium with 100% cell viability. The hydrogels can be implanted under the conjunctiva without causing adverse effects to the retina based on hematoxylin and eosin stain, immunostaining for microglial cell activation, and electroretinography. These subconjunctivally implantable hydrogels have potential for long-term periocular delivery of insulin or other drugs to treat diabetic retinopathy and other retinal diseases
- …
