5,554 research outputs found
Asymptotic homogenisation in strength and fatigue durability analysis of composites
This is the post-print version of the Article. Copyright @ 2003 Kluwer Academic Publishers.Asymptotic homogenisation technique and two-scale convergence is used for analysis of macro-strength and fatigue durability of composites with a periodic structure under cyclic loading. The linear damage accumulation rule is employed in the phenomenological micro-durability conditions (for each component of the composite) under varying cyclic loading. Both local and non-local strength and durability conditions are analysed. The strong convergence of the strength as the structure period tends to zero is proved and its limiting value is estimated.This work was supported under the research grant GR/M24592 from the Engineering and Physical Sciences Research Council, UK
Homogenization of the one-dimensional wave equation
We present a method for two-scale model derivation of the periodic
homogenization of the one-dimensional wave equation in a bounded domain. It
allows for analyzing the oscillations occurring on both microscopic and
macroscopic scales. The novelty reported here is on the asymptotic behavior of
high frequency waves and especially on the boundary conditions of the
homogenized equation. Numerical simulations are reported
Effective macroscopic dynamics of stochastic partial differential equations in perforated domains
An effective macroscopic model for a stochastic microscopic system is
derived. The original microscopic system is modeled by a stochastic partial
differential equation defined on a domain perforated with small holes or
heterogeneities. The homogenized effective model is still a stochastic partial
differential equation but defined on a unified domain without holes. The
solutions of the microscopic model is shown to converge to those of the
effective macroscopic model in probability distribution, as the size of holes
diminishes to zero. Moreover, the long time effectivity of the macroscopic
system in the sense of \emph{convergence in probability distribution}, and the
effectivity of the macroscopic system in the sense of \emph{convergence in
energy} are also proved
Homogenization in magnetic-shape-memory polymer composites
Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a
large change of shape to the presence of an external magnetic field. As an
alternative for the difficult to manifacture single crystal of these alloys we
study composite materials in which small magnetic-shape-memory particles are
embedded in a polymer matrix. The macroscopic properties of the composite
depend strongly on the geometry of the microstructure and on the
characteristics of the particles and the polymer.
We present a variational model based on micromagnetism and elasticity, and
derive via homogenization an effective macroscopic model under the assumption
that the microstructure is periodic. We then study numerically the resulting
cell problem, and discuss the effect of the microstructure on the macroscopic
material behavior. Our results may be used to optimize the shape of the
particles and the microstructure.Comment: 17 pages, 4 figure
Some flows in shape optimization
Geometric flows related to shape optimization problems of Bernoulli type are
investigated. The evolution law is the sum of a curvature term and a nonlocal
term of Hele-Shaw type. We introduce generalized set solutions, the definition
of which is widely inspired by viscosity solutions. The main result is an
inclusion preservation principle for generalized solutions. As a consequence,
we obtain existence, uniqueness and stability of solutions. Asymptotic behavior
for the flow is discussed: we prove that the solutions converge to a
generalized Bernoulli exterior free boundary problem
Homogenization of a model for the propagation of sound in the lungs
International audienceIn this paper, we are interested in the mathematical modeling of the propagation of sound waves in the lung parenchyma, which is a foam-like elastic material containing millions of air-filled alveoli. In this study, the parenchyma is governed by the linearized elasticity equations, and the air by the acoustic wave equations. The geometric arrangement of the alveoli is assumed to be periodic with a small period ε > 0. We consider the time-harmonic regime forced by vibrations induced by volumic forces. We use the two-scale convergence theory to study the asymptotic behavior as ε goes to zero and prove the convergence of the solutions of the coupled fluid-structure problem to the solution of a linear-elasticity boundary value problem
Smoluchowski-Kramers approximation in the case of variable friction
We consider the small mass asymptotics (Smoluchowski-Kramers approximation)
for the Langevin equation with a variable friction coefficient. The limit of
the solution in the classical sense does not exist in this case. We study a
modification of the Smoluchowski-Kramers approximation. Some applications of
the Smoluchowski-Kramers approximation to problems with fast oscillating or
discontinuous coefficients are considered.Comment: already publishe
Surface Gap Soliton Ground States for the Nonlinear Schr\"{o}dinger Equation
We consider the nonlinear Schr\"{o}dinger equation , with and and with periodic in each coordinate direction. This problem
describes the interface of two periodic media, e.g. photonic crystals. We study
the existence of ground state solutions (surface gap soliton ground
states) for . Using a concentration compactness
argument, we provide an abstract criterion for the existence based on ground
state energies of each periodic problem (with and ) as well as a more practical
criterion based on ground states themselves. Examples of interfaces satisfying
these criteria are provided. In 1D it is shown that, surprisingly, the criteria
can be reduced to conditions on the linear Bloch waves of the operators
and .Comment: definition of ground and bound states added, assumption (H2) weakened
(sign changing nonlinearity is now allowed); 33 pages, 4 figure
Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions
A microscopic heterogeneous system under random influence is considered. The
randomness enters the system at physical boundary of small scale obstacles as
well as at the interior of the physical medium. This system is modeled by a
stochastic partial differential equation defined on a domain perforated with
small holes (obstacles or heterogeneities), together with random dynamical
boundary conditions on the boundaries of these small holes.
A homogenized macroscopic model for this microscopic heterogeneous stochastic
system is derived. This homogenized effective model is a new stochastic partial
differential equation defined on a unified domain without small holes, with
static boundary condition only. In fact, the random dynamical boundary
conditions are homogenized out, but the impact of random forces on the small
holes' boundaries is quantified as an extra stochastic term in the homogenized
stochastic partial differential equation. Moreover, the validity of the
homogenized model is justified by showing that the solutions of the microscopic
model converge to those of the effective macroscopic model in probability
distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200
Asymptotics of Eigenvalues and Eigenfunctions for the Laplace Operator in a Domain with Oscillating Boundary. Multiple Eigenvalue Case
We study the asymptotic behavior of the solutions of a spectral problem for
the Laplacian in a domain with rapidly oscillating boundary. We consider the
case where the eigenvalue of the limit problem is multiple. We construct the
leading terms of the asymptotic expansions for the eigenelements and verify the
asymptotics
- …
