887 research outputs found
A new species of Colletes (Hymenoptera: Apoidea: Colletidae) from northern Florida and Georgia, with notes on the Colletes of those states
Colletes ultravalidus Hall & Ascher, new species, is described from several sites in northwestern Florida and southeastern Georgia. It is a member of the inaequalis species group, very similar to C. validus Cresson, a specialist of Ericaceae, but can be distinguished by an even more elongate malar area and the absence of conspicuous tergal fascia. Colletes ultravalidus has been found flying from early winter to early spring when it forms nest aggregations in xeric sites adjacent to shrub bog or basin swamp, the habitat of Pieris phyllyreifolia (Hook.) DC. (Ericaceae), the most likely, but as yet unconfirmed, host plant of the new species. State records of Colletes for Florida and Georgia are reviewed and discrepancies in taxonomy and distributional limits between Stephen’s 1954 revision of the genus and Mitchell’s 1960 monograph of eastern North American bees are noted. We concur with Stephen that the distributions of several taxa in Colletes are more limited than that reported by Mitchell
Unraveling the Pharmacokinetic Interaction of Ticagrelor and MEDI2452 (Ticagrelor Antidote) by Mathematical Modeling
The investigational ticagrelor-neutralizing antibody fragment, MEDI2452, is developed to rapidly and specifically reverse the antiplatelet effects of ticagrelor. However, the dynamic interaction of ticagrelor, the ticagrelor active metabolite (TAM), and MEDI2452, makes pharmacokinetic (PK) analysis nontrivial and mathematical modeling becomes essential to unravel the complex behavior of this system. We propose a mechanistic PK model, including a special observation model for post-sampling equilibration, which is validated and refined using mouse in vivo data from four studies of combined ticagrelor-MEDI2452 treatment. Model predictions of free ticagrelor and TAM plasma concentrations are subsequently used to drive a pharmacodynamic (PD) model that successfully describes platelet aggregation data. Furthermore, the model indicates that MEDI2452-bound ticagrelor is primarily eliminated together with MEDI2452 in the kidneys, and not recycled to the plasma, thereby providing a possible scenario for the extrapolation to humans. We anticipate the modeling work to improve PK and PD understanding, experimental design, and translational confidence
Simulation of Light Antinucleus-Nucleus Interactions
Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and
anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some
cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To
support the experimental studies of the anti-nuclei a Monte Carlo simulation of
anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The
implementation combines practically all known theoretical approaches to the
problem of antinucleon-nucleon interactions.Comment: 8 pages, 5 figure
Peculiarities in produced particles emission in 208Pb + Ag(Br) interactions at 158 A GeV/c
The angular structures of particles produced in 208Pb induced collisions with
Ag(Br) nuclei in an emulsion detector at 158 A GeV/c have been investigated.
Nonstatistical ring-like substructures in azimuthal plane of the collision have
been found and their parameters have been determined. The indication on the
formation of the ring-like substructures from two symmetrical emission cones -
one in the forward and other in the backward direction in the center-of mass
system have been obtained. The ring-like substructures parameters have been
determined. The experimental results are in an agreement with I.M. Dremin idea,
that mechanism of the ring-like substructures formation in nuclear collisions
is similar to that of Cherenkov electromagnetic radiation.Comment: 10 pages, 7 figures, Report at the HADRON STRUCTURE'04 Conference,
Smolenice, Slovakia, 30.8.-3.9.200
A Relational Event Approach to Modeling Behavioral Dynamics
This chapter provides an introduction to the analysis of relational event
data (i.e., actions, interactions, or other events involving multiple actors
that occur over time) within the R/statnet platform. We begin by reviewing the
basics of relational event modeling, with an emphasis on models with piecewise
constant hazards. We then discuss estimation for dyadic and more general
relational event models using the relevent package, with an emphasis on
hands-on applications of the methods and interpretation of results. Statnet is
a collection of packages for the R statistical computing system that supports
the representation, manipulation, visualization, modeling, simulation, and
analysis of relational data. Statnet packages are contributed by a team of
volunteer developers, and are made freely available under the GNU Public
License. These packages are written for the R statistical computing
environment, and can be used with any computing platform that supports R
(including Windows, Linux, and Mac).
Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
BackgroundThe mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question.ResultsIn this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations.ConclusionsOverall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches
Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?
We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the
earlier developed and recently refined parton-cascade/cluster-hadronization
model and its Monte Carlo implementation. This space-time model involves the
dynamical interplay of perturbative QCD parton production and evolution, with
non-perturbative parton-cluster formation and hadron production through cluster
decays. Using computer simulations, we are able to follow the entwined
time-evolution of parton and hadron degrees of freedom in both position and
momentum space, from the instant of nuclear overlap to the final yield of
particles. We present and discuss results for the multiplicity distributions,
which agree well with the measured data from the CERN SPS, including those for
K mesons. The transverse momentum distributions of the produced hadrons are
also found to be in good agreement with the preliminary data measured by the
NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN
SPS. The analysis of the time evolution of transverse energy deposited in the
collision zone and the energy density suggests an existence of partonic matter
for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure
Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model
We develop and extend the dynamical string parton model. This model, which is
based on the salient features of QCD, uses classical Nambu-Got\=o strings with
the endpoints identified as partons, an invariant string breaking model of the
hadronization process, and interactions described as quark-quark interactions.
In this work, the original model is extended to include a phenomenological
quantization of the mass of the strings, an analytical technique for treating
the incident nucleons as a distribution of string configurations determined by
the experimentally measured structure function, the inclusion of the gluonic
content of the nucleon through the introduction of purely gluonic strings, and
the use of a hard parton-parton interaction taken from perturbative QCD
combined with a phenomenological soft interaction. The limited number of
parameters in the model are adjusted to and -- data. Utilizing
these parameters, the first calculations of the model for -- and
-- collisions are presented and found to be in reasonable agreement with
a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex
A multi-disciplinary perspective on emergent and future innovations in peer review [version 2; referees: 2 approved]
Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform and reduce the biases of existing models as much as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that could, at least partially, resolve many of the socio-technical issues associated with peer review, and potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments
- …
