1,781 research outputs found
The crossover from collective motion to periphery diffusion for 2D adatom-islands on Cu(111)
The diffusion of two dimensional adatom islands (up to 100 atoms) on Cu(111)
has been studied, using the self-learning Kinetic Monte Carlo (SLKMC) method
[1]. A variety of multiple- and single-atom processes are revealed in the
simulations, and the size dependence of the diffusion coefficients and
effective diffusion barriers are calculated for each. From the tabulated
frequencies of events found in the simulation, we show a crossover from
diffusion due to the collective motion of the island to a regime in which the
island diffuses through periphery-dominated mass transport. This crossover
occurs for island sizes between 13 and 19 atoms. For islands containing 19 to
100 atoms the scaling exponent is 1.5, which is in good agreement with previous
work. The diffusion of islands containing 2 to 13 atoms can be explained
primarily on the basis of a linear increase of the barrier for the collective
motion with the size of the island
Self-learning Kinetic Monte-Carlo method: application to Cu(111)
We present a novel way of performing kinetic Monte Carlo simulations which
does not require an {\it a priori} list of diffusion processes and their
associated energetics and reaction rates.
Rather, at any time during the simulation, energetics for all possible
(single or multi-atom) processes, within a specific interaction range, are
either computed accurately using a saddle point search procedure, or retrieved
from a database in which previously encountered processes are stored. This
self-learning procedure enhances the speed of the simulations along with a
substantial gain in reliability because of the inclusion of many-particle
processes.
Accompanying results from the application of the method to the case of
two-dimensional Cu adatom-cluster diffusion and coalescence on Cu(111) with
detailed statistics of involved atomistic processes and contributing diffusion
coefficients attest to the suitability of the method for the purpose.Comment: 18 pages, 9 figure
The state of LiRb
We report our spectroscopic studies of the state of ultra-cold
LiRb using resonantly-enhanced multi-photon ionization and depletion
spectroscopy with bound-to-bound transitions originating from the metastable state. We evaluate the potential of this state for use as the
intermediate state in a STIRAP transfer scheme from triplet Feshbach LiRb
molecules to the ground state, and find that the lowest
several vibrational levels possess the requisite overlap with initial and final
states, as well as convenient energies. Using depletion measurements, we
measured the well depth and spin-orbit splitting. We suggest possible pathways
for short-range photoassociation using deeply-bound vibrational levels of this
electronic state
Doppler-free Yb Spectroscopy with Fluorescence Spot Technique
We demonstrate a simple technique to measure the resonant frequency of the
398.9 nm 1S0 - 1P1 transition for the different Yb isotopes. The technique,
that works by observing and aligning fluorescence spots, has enabled us to
measure transition frequencies and isotope shifts with an accuracy of 60 MHz.
We provide wavelength measurements for the transition that differ from
previously published work. Our technique also allows for the determination of
Doppler shifted transition frequencies for photoionisation experiments when the
atomic beam and laser beam are not perpendicular and furthermore allows us to
determine the average velocity of the atoms along the direction of atomic beam
Atomistic studies of thin film growth
We present here a summary of some recent techniques used for atomistic
studies of thin film growth and morphological evolution. Specific attention is
given to a new kinetic Monte Carlo technique in which the usage of unique
labeling schemes of the environment of the diffusing entity allows the
development of a closed data base of 49 single atom diffusion processes for
periphery motion. The activation energy barriers and diffusion paths are
calculated using reliable manybody interatomic potentials. The application of
the technique to the diffusion of 2-dimensional Cu clusters on Cu(111) shows
interesting trends in the diffusion rate and in the frequencies of the
microscopic mechanisms which are responsible for the motion of the clusters, as
a function of cluster size and temperature. The results are compared with those
obtained from yet another novel kinetic Monte Carlo technique in which an open
data base of the energetics and diffusion paths of microscopic processes is
continuously updated as needed. Comparisons are made with experimental data
where available
Carotid plaque hemorrhage on magnetic resonance imaging strongly predicts recurrent ischemia and stroke
Objective
There is a recognized need to improve selection of patients with carotid artery stenosis for carotid endarterectomy (CEA). We assessed the value of magnetic resonance imaging (MRI)-defined carotid plaque hemorrhage (MRIPH) to predict recurrent ipsilateral cerebral ischemic events, and stroke in symptomatic carotid stenosis.
Methods
One hundred seventy-nine symptomatic patients with ≥50% stenosis were prospectively recruited, underwent carotid MRI, and were clinically followed up until CEA, death, or ischemic event. MRIPH was diagnosed if the plaque signal intensity was >150% that of the adjacent muscle. Event-free survival analysis was done using Kaplan–Meier plots and Cox regression models controlling for known vascular risk factors. We also undertook a meta-analysis of reported data on MRIPH and recurrent events.
Results
One hundred fourteen patients (63.7%) showed MRIPH, suffering 92% (57 of 62) of all recurrent ipsilateral events and all but 1 (25 of 26) future strokes. Patients without MRIPH had an estimated annual absolute stroke risk of only 0.6%. Cox multivariate regression analysis proved MRIPH as a strong predictor of recurrent ischemic events (hazard ratio [HR] = 12.0, 95% confidence interval [CI] = 4.8–30.1, p < 0.001) and stroke alone (HR = 35.0, 95% CI = 4.7–261.6, p = 0.001). Meta-analysis of published data confirmed this association between MRIPH and recurrent cerebral ischemic events in symptomatic carotid artery stenosis (odds ratio = 12.2, 95% CI = 5.5–27.1, p < 0.00001).
Interpretation
MRIPH independently and strongly predicts recurrent ipsilateral ischemic events, and stroke alone, in symptomatic ≥50% carotid artery stenosis. The very low stroke risk in patients without MRIPH puts into question current risk–benefit assessment for CEA in this subgroup
Diffusion of small two-dimensional Cu islands on Cu(111) studied with a kinetic Monte Carlo method
Diffusion of small two-dimensional Cu islands (containing up to 10 atoms) on Cu(111) has been studied using the newly developed self-learning Kinetic Monte Carlo (SLKMC) method which is based on a database of diffusion processes and their energetics accumulated automatically during the implementation of the SLKMC code. Results obtained from simulations in which atoms hop from one fcc hollow site to another are compared with those obtained from a parallel set of simulations in which the database is supplemented by processes revealed in complementary molecular dynamics simulations at 500K. They include processes involving the hcp (stacking-fault) sites, which facilitate concerted motion of the islands (simultaneous motion of all atoms in the island). A significant difference in the scaling of the effective diffusion barriers with island size is observed in the two cases. In particular, the presence of concerted island motion leads to an almost linear increase in the effective diffusion barrier with size, while its absence accounts for strong size-dependent oscillations and anomalous behavior for trimers and heptamers. We also identify and discuss in detail the key microscopic processes responsible for the diffusion and examine the frequencies of their occurrence, as a function of island size and substrate temperature.Peer reviewe
Lack of association between polymorphism rs540782 and primary open angle glaucoma in Saudi patients.
Background
To investigate whether polymorphism rs540782 on chromsome 1, in close proximity to the Zona Pellucida Glycoprotein 4 (ZP4) gene, is a risk factor for primary open angle glaucoma (POAG).
Method
The study genotyped 92 unrelated POAG cases and 95 control subjects from Saudi Arabia using Taq-Man® assay.
Results
The genotype frequency distribution did not deviate significantly from the Hardy-Weinberg equilibrium (p > 0.05). Overall, both the genotype and allele frequencies were not significantly different between cases and controls. The minor ‘C’ allele frequency was 49.4%, which was comparable to the Japanese population and higher than the Indian and Afro-Caribbean populations. Similarly, no significant association was found between genotypes and systemic diseases and health awareness/behavior domain variables. Importantly, glaucoma specific indices, such as intraocular pressure, cup/disc ratio and number of anti-glaucoma medication, also showed no statistically significant effect of genotypes within POAG cases.
Conclusion
Polymorphism rs540782 is not a risk factor for POAG in the Saudi cohort
- …
