214 research outputs found
Draft Genome Sequences of the Type Strains of Six Macrococcus Species.
We report here the draft genome sequences of Macrococcus bovicus ATCC 51825T, Macrococcus carouselicus ATCC 51828T, Macrococcus equipercicus ATCC 51831T, Macrococcus brunensis CCM4811T, Macrococcus hajekii CCM4809T, and Macrococcus lamae CCM4815T The availability of the genome sequences of these species will enable cross-species comparison, which could lead to a more comprehensive understanding of organisms of the Macrococcus genus.fals
Draft Genome Sequences of Macrococcus caseolyticus, Macrococcus canis, Macrococcus bohemicus, and Macrococcus goetzii.
Here, we present the draft genome sequences of 14 strains of 4 species of the genus Macrococcus These strains were isolated from bovine milk and tongue samples obtained during a screening program.fals
Überblick über Spurenelemente in Böden der Aue der Mittleren Elbe
Floodplain soils across the Central Elbe River, Germany, have unique features. These soils vary considerably in their properties due to rapid fluvial processes and in metal contents due to frequent industrial discharge into the river. Although there have been works studying such soils, there has never been a comprehensive study that would monitor a large number of entire soil profiles along the Elbe River.
Our aim was to describe the main properties of 94 profiles representing different soils along the Elbe River, their content from 15 potentially toxic elements (PTEs) in various depths, and assess various soil contamination and health risk indices.
We measured soil properties auch as pH, organic carbon (OC), particle size distribution, as well as total concentrations of aluminium (Al), arsenic (As), barium (Ba), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), nickel (Ni), rubidium (Rb), strontium (Sr), tin (Sn), vanadium (V), zirconium (Zr), and zinc (Zn) in all soil profiles.
We presented the data for all soil horizons and in top- (0-30 cm depth) and subsoil (>30 cm depth). We found that pH, OC, and clay differed significantly between top- and subsoil horizons reflecting different water regimes and other factors. On the other hand, Al, Fe, and Mn were not affected significantly by depth. Among the studied PTEs, Sn was found to be generating the highest values in Contamination Factor, Geoaccumulation Index, and Enrichment Factor; it was followed by As, Zn, and Pb. Other PTEs such as Ba, Rb, Sr, V, and Zr, and exhibited much lower soil contamination index values. The Pollution Load Index was very high. Health risk assessment indicated rather unexpectedly that Zr was the primary contributor to total risk. We conclude that in multi-element contamination cases, even PTEs with low soil concentrations (such as Zr here) may have predominant role in the risk related to soil contamination
Exploring rumen microbe-derived fibre-degrading activities for improving feed digestibility
Ruminal fibre degradation is mediated by a complex community of rumen microbes, and its efficiency is crucial for optimal dairy productivity. Enzymes produced by rumen microbes are primarily responsible for degrading the complex structural polysaccharides that comprise fibre in the plant cell walls of feed materials. Because rumen microbes have evolved with their ruminant hosts over millions of years to perform this task, their enzymes are hypothesised to be optimally suited for activity at the temperature, pH range, and anaerobic environment of the rumen. However, fibre-rich diets are not fully digested, which represents a loss in potential animal productivity. Thus, there is opportunity to improve fibre utilisation through treating feeds with rumen microbe-derived fibrolytic enzymes and associated activities that enhance fibre degradation. This research aims to gain a better understanding of the key rumen microbes involved in fibre degradation and the mechanisms they employ to degrade fibre, by applying cultivation-based and culture-independent genomics approaches to rumen microbial communities of New Zealand dairy cattle. Using this knowledge, we aim to identify new opportunities for improving fibre degradation to enhance dairy productivity.
Rumen content samples were taken over the course of a year from a Waikato dairy production herd. Over 1,000 rumen bacterial cultures were obtained from the plant-adherent fraction of the rumen contents. Among these cultures, two, 59 and 103 potentially new families, genera and species of rumen bacteria were identified, respectively. Many of the novel strains are being genome sequenced within the Hungate 1000 rumen microbial reference genome programme, which is providing deeper insights into the range of mechanisms used by the individual strains for fibre degradation. This information has been used to guide the selection of rumen bacterial strains with considerable potential as fibrolytic enzyme producers in vitro, with the intent of developing the strains so that their enzymes may be used as feed pre-treatments for use on farm. Culture-independent metagenomic approaches were also used to explore the activities involved in fibre degradation from the rumen microbial communities. Functional screening has revealed a range of novel enzymes and a novel fibre disrupting activity. Enrichment for the cell-secreted proteins from the community revealed evidence of a diverse range of cellulosomes, which are cell-surface associated multi-enzyme complexes that efficiently degrade plant cell wall polysaccharides. Biochemical and structural characterisation of these proteins has been conducted.
In conclusion, cultivation and culture-independent genomic approaches have been applied to New Zealand bovine rumen microbial communities, and have provided considerable new insights into ruminal fibre degradation processes. Novel activities and bacterial species that display desirable activities on fibrous substrates in vitro are now being explored for their potential to improve ruminal fibre degradation, to allow the development of new technologies that will enhance dairy productivity
Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions.
Agricultural methane produced by archaea in the forestomach of ruminants is a key contributor to rising levels of greenhouse gases leading to climate change. Functionalized biological polyhydroxybutyrate (PHB) nanoparticles offer a new concept for the reduction of enteric methane emissions by inhibiting rumen methanogens. Nanoparticles were functionalized in vivo with an archaeal virus lytic enzyme, PeiR, active against a range of rumen Methanobrevibacter species. The impact of functionalized nanoparticles against rumen methanogens was demonstrated in pure cultures, in rumen batch and continuous flow rumen models yielding methane reduction of up to 15% over 11 days in the most complex system. We further present evidence of biological nanoparticle fermentation in a rumen environment. Elevated levels of short-chain fatty acids essential to ruminant nutrition were recorded, giving rise to a promising new strategy combining methane mitigation with a possible increase in animal productivity.fals
Structural characterization of a PCP-R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions
Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes that produce a wide range of bioactive peptides, such as siderophores, toxins, and antibacterial and insecticidal agents. NRPSs are dynamic proteins characterized by extensive interdomain communications as a consequence of their assembly-line mode of synthesis. Hence, crystal structures of multidomain fragments of NRPSs have aided in elucidating crucial interdomain interactions that occur during different steps of the NRPS catalytic cycle. One crucial yet unexplored interaction is that between the reductase (R) domain and the peptide carrier protein (PCP) domain. R domains are members of the short-chain dehydrogenase/reductase family and function as termination domains that catalyze the reductive release of the final peptide product from the terminal PCP domain of the NRPS. Here, we report the crystal structure of an archaeal NRPS PCP-R didomain construct. This is the first NRPS R domain structure to be determined together with the upstream PCP domain and is also the first structure of an archaeal NRPS to be reported. The structure reveals that a novel helix-turn-helix motif, found in NRPS R domains but not in other short-chain dehydrogenase/reductase family members, plays a major role in the interface between the PCP and R domains. The information derived from the described PCP-R interface will aid in gaining further mechanistic insights into the peptide termination reaction catalyzed by the R domain and may have implications in engineering NRPSs to synthesize novel peptide products.fals
Inhibition of Rumen Methanogens by a Novel Archaeal Lytic Enzyme Displayed on Tailored Bionanoparticles
Methane is a potent greenhouse gas, 25 times more efficient at trapping heat than carbon dioxide. Ruminant methane emissions contribute almost 30% to anthropogenic sources of global atmospheric methane levels and a reduction in methane emissions would significantly contribute to slowing global temperature rises. Here we demonstrate the use of a lytic enyzme, PeiR, from a methanogen virus that infects Methanobrevibacter ruminantium M1 as an effective agent inhibiting a range of rumen methanogen strains in pure culture. We determined the substrate specificity of soluble PeiR and demonstrated that the enzyme is capable of hydrolysing the pseudomurein cell walls of methanogens. Subsequently, peiR was fused to the polyhydroxyalkanoate (PHA) synthase gene phaC and displayed on the surface of PHA bionanoparticles (BNPs) expressed in Eschericia coli via one-step biosynthesis. These tailored BNPs were capable of lysing not only the original methanogen host strain, but a wide range of other rumen methanogen strains in vitro. Methane production was reduced by up to 97% for 5 days post-inoculation in the in vitro assay. We propose that tailored BNPs carrying anti-methanogen enzymes represent a new class of methane inhibitors. Tailored BNPs can be rapidly developed and may be able to modulate the methanogen community in vivo with the aim to lower ruminant methane emissions without impacting animal productivity
Culture and genome-based analysis of four soil Clostridium isolates reveal their potential for antimicrobial production
BACKGROUND: Soil bacteria are a major source of specialized metabolites including antimicrobial compounds. Yet, one of the most diverse genera of bacteria ubiquitously present in soil, Clostridium, has been largely overlooked in bioactive compound discovery. As Clostridium spp. thrive in extreme environments with their metabolic mechanisms adapted to the harsh conditions, they are likely to synthesize molecules with unknown structures, properties, and functions. Therefore, their potential to synthesize small molecules with biological activities should be of great interest in the search for novel antimicrobial compounds. The current study focused on investigating the antimicrobial potential of four soil Clostridium isolates, FS01, FS2.2 FS03, and FS04, using a genome-led approach, validated by culture-based methods.
RESULTS: Conditioned/spent media from all four Clostridium isolates showed varying levels of antimicrobial activity against indicator microorganism; all four isolates significantly inhibited the growth of Pseudomonas aeruginosa. FS01, FS2.2, and FS04 were active against Bacillus mycoides and FS03 reduced the growth of Bacillus cereus. Phylogenetic analysis together with DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and functional genome distribution (FGD) analyses confirmed that FS01, FS2.2, and FS04 belong to the species Paraclostridium bifermentans, Clostridium cadaveris, and Clostridium senegalense respectively, while FS03 may represent a novel species of the genus Clostridium. Bioinformatics analysis using antiSMASH 5.0 predicted the presence of eight biosynthetic gene clusters (BGCs) encoding for the synthesis of ribosomally synthesized post-translationally modified peptides (RiPPs) and non-ribosomal peptides (NRPs) in four genomes. All predicted BGCs showed no similarity with any known BGCs suggesting novelty of the molecules from those predicted gene clusters. In addition, the analysis of genomes for putative virulence factors revealed the presence of four putative Clostridium toxin related genes in FS01 and FS2.2 genomes. No genes associated with the main Clostridium toxins were identified in the FS03 and FS04 genomes.
CONCLUSIONS: The presence of BGCs encoding for uncharacterized RiPPs and NRPSs in the genomes of antagonistic Clostridium spp. isolated from farm soil indicated their potential to produce novel secondary metabolites. This study serves as a basis for the identification and characterization of potent antimicrobials from these soil Clostridium spp. and expands the current knowledge base, encouraging future research into bioactive compound production in members of the genus Clostridium.fals
Genome-scale analyses of health-promoting bacteria: probiogenomics
The human body is colonized by an enormous population of bacteria (microbiota) that provides the host with coding capacity and metabolic activities. Among the human gut microbiota are health-promoting indigenous species (probiotic bacteria) that are commonly consumed as live dietary supplements. Recent genomics-based studies (probiogenomics) are starting to provide insights into how probiotic bacteria sense and adapt to the gastrointestinal tract environment. In this Review, we discuss the application of probiogenomics in the elucidation of the molecular basis of probiosis using the well-recognized model probiotic bacteria genera Bifidobacterium and Lactobacillus as examples
- …
