443 research outputs found
Interleukin 1-Beta (IL-1) Production by Innate Cells Following TLR Stimulation Correlates With TB Recurrence in ART-Treated HIV-Infected Patients
BACKGROUND: Tuberculosis (TB) remains a major cause of global morbidity and mortality, especially in the context of HIV co-infection, since immunity is not completely restored following antiretroviral therapy (ART). The identification of immune correlates of risk for TB disease could help in the design of host-directed therapies and clinical management. This study aimed to identify innate immune correlates of TB recurrence in HIV+ ART-treated individuals with a history of previous successful TB treatment. METHODS: Twelve participants with a recurrent episode of TB (cases) were matched for age, sex, time on ART, pre-ART CD4 count with 12 participants who did not develop recurrent TB in 60 months of follow-up (controls). Cryopreserved peripheral blood mononuclear cells from time points prior to TB recurrence were stimulated with ligands for Toll like receptors (TLR) including TLR-2, TLR-4, and TLR-7/8. Multi-color flow cytometry and intracellular cytokine staining was used to detect IL-1β, TNF-α, IL-12 and IP10 responses from monocytes and myeloid dendritic cells (mDCs). RESULTS: Elevated production of IL-1β from monocytes following TLR-2, TLR-4 and TLR-7/8 stimulation was associated with reduced odds of TB recurrence. In contrast, production of IL-1β from both monocytes and mDCs following Bacillus Calmette-Guérin (BCG) stimulation was associated with increased odds of TB recurrence (risk of recurrence increased by 30% in monocytes and 42% in mDCs respectively). CONCLUSION: Production of IL-1β by innate immune cells following TLR and BCG stimulations correlated with differential TB recurrence outcomes in ART-treated patients and highlights differences in host response to TB
Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in Human Immunodeficiency Virus Type 1 infection
Numerous studies now support that human immunodeficiency virus type 1 (HIV-1) evolution is influenced by immune selection pressure, with population studies showing an association between specific HLA alleles and mutations within defined cytotoxic T-lymphocyte epitopes. Here we combine sequence data and functional studies of CD8 T-cell responses to demonstrate that allele-specific immune pressures also select for mutations flanking CD8 epitopes that impair antigen processing. In persons expressing HLA-A3, we demonstrate consistent selection for a mutation in a C-terminal flanking residue of the normally immunodominant Gag KK9 epitope that prevents its processing and presentation, resulting in a rapid decline in the CD8 T-cell response. This single amino acid substitution also lies within a second HLA-A3-restricted epitope, with the mutation directly impairing recognition by CD8 T cells. Transmission of the mutation to subjects expressing HLA-A3 was shown to prevent the induction of normally immunodominant acute-phase responses to both epitopes. However, subsequent in vivo reversion of the mutation was coincident with delayed induction of new CD8 T-cell responses to both epitopes. These data demonstrate that mutations within the flanking region of an HIV-1 epitope can impair recognition by an established CD8 T-cell response and that transmission of these mutations alters the acute-phase CD8+ T-cell response. Moreover, reversion of these mutations in the absence of the original immune pressure reveals the potential plasticity of immunologically selected evolutionary changes
Recommended from our members
P16-12. Relative Dominance of Gag-Specific Cytotoxic T Lymphocytes Is Associated with Viral Load Inversely in HIV-1 Clade B' Infected Chinese
Differential narrow focusing of immunodominant human immunodeficiency virus Gag-specific cytotoxic T-Lymphocyte responses in infected African and Caucasoid adults and children
Cytotoxic T-lymphocyte (CTL) activity plays a central role in control of viral replication and in determining outcome in cases of human immunodeficiency virus type 1 (HIV-1) infection. Incorporation of important CTL epitope sequences into candidate vaccines is, therefore, vital. Most CTL studies have focused upon small numbers of adult Caucasoid subjects infected with clade-B virus, whereas the global epidemic is most severe in sub-Saharan African populations and predominantly involves clade-C infection in both adults and children. In this study, sensitive enzyme-linked immunospot (elispot) assays have been utilized to identify the dominant Gag-specific CTL epitopes targeted by adults and children infected with clade-B or -C virus. Cohorts evaluated included 44 B-clade-infected Caucasoid American and African American adults and children and 37 C-clade-infected African adults and children from Durban, South Africa. The results show that 3 out of 46 peptides spanning p17Gag and p24Gag sequences tested contain two-thirds of the dominant Gag-specific epitopes, irrespective of the clade, ethnicity, or age group studied. However, there were distinctive differences between the dominant responses made by Caucasoids and Africans. Dominant responses in Caucasoids were more often within p17Gag peptide residues 16 to 30 (38 versus 12%; P 30% of the total infected population in Durban. This epitope is closely homologous with dominant HIV-2 and simian immunodeficiency virus Gag-specific CTL epitopes. The fine focusing of dominant CTL responses to these few regions of high immunogenicity is of significance to vaccine design
Distinct genital tract HIV-specific antibody profiles associated with tenofovir gel
The impact of topical antiretrovirals for pre-exposure prophylaxis on humoral responses following HIV infection is unknown. Using a binding antibody multiplex assay, we investigated HIV-specific IgG and IgA responses to envelope glycoproteins, p24 Gag and p66, in the genital tract (GT) and plasma following HIV acquisition in women assigned to tenofovir gel (n=24) and placebo gel (n=24) in the CAPRISA 004 microbicide trial to assess if this topical antiretroviral had an impact on mucosal and systemic antibody responses. Linear mixed effect modeling and partial least squares discriminant analysis was used to identify multivariate antibody signatures associated with tenofovir use. There were significantly higher response rates to gp120 Env (P=0.03), p24 (P=0.002), and p66 (P=0.009) in plasma and GT in women assigned to tenofovir than placebo gel at multiple time points post infection. Notably, p66 IgA titers in the GT and plasma were significantly higher in the tenofovir compared with the placebo arm (P<0.05). Plasma titers for 9 of the 10 HIV-IgG specificities predicted GT levels. Taken together, these data suggest that humoral immune responses are increased in blood and GT of individuals who acquire HIV infection in the presence of tenofovir gel.United States. National Institutes of Health (AI51794)United States. National Institutes of Health (AI104387)United States. National Institutes of Health (AI115981)United States. National Institutes of Health (AI116086)United States. Agency for International Development (GP00-08-00005-00 subproject agreement PPA-09-046
Accounting Problems Under the Excess Profits Tax
DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV- 1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8(+) T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.Funding Agencies|Research Council of Norway; Odd Fellow</p
Effects of thymic selection of the T cell repertoire on HLA-class I associated control of HIV infection
Without therapy, most people infected with human immunodeficiency virus (HIV) ultimately progress to AIDS. Rare individuals (‘elite controllers’) maintain very low levels of HIV RNA without therapy, thereby making disease progression and transmission unlikely. Certain HLA class I alleles are markedly enriched in elite controllers, with the highest association observed for HLA-B57 (ref. 1). Because HLA molecules present viral peptides that activate CD8+ T cells, an immune-mediated mechanism is probably responsible for superior control of HIV. Here we describe how the peptide-binding characteristics of HLA-B57 molecules affect thymic development such that, compared to other HLA-restricted T cells, a larger fraction of the naive repertoire of B57-restricted clones recognizes a viral epitope, and these T cells are more cross-reactive to mutants of targeted epitopes. Our calculations predict that such a T-cell repertoire imposes strong immune pressure on immunodominant HIV epitopes and emergent mutants, thereby promoting efficient control of the virus. Supporting these predictions, in a large cohort of HLA-typed individuals, our experiments show that the relative ability of HLA-B alleles to control HIV correlates with their peptide-binding characteristics that affect thymic development. Our results provide a conceptual framework that unifies diverse empirical observations, and have implications for vaccination strategies.Mark and Lisa Schwartz FoundationNational Institutes of Health (U.S.) (Director’s Pioneer award)Philip T. and Susan M. Ragon FoundationJane Coffin Childs Memorial Fund for Medical ResearchBill & Melinda Gates FoundationNational Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (contract no. HHSN261200800001E)National Institutes of Health (U.S.). Intramural Research ProgramNational Cancer Institute (U.S.)Center for Cancer Research (National Cancer Institute (U.S.)
Changes in Natural Killer Cell Activation and Function during Primary HIV-1 Infection
Background: Recent reports suggest that Natural Killer (NK) cells may modulate pathogenesis of primary HIV-1 infection. However, HIV dysregulates NK-cell responses. We dissected this bi-directional relationship to understand how HIV impacts NK-cell responses during primary HIV-1 infection.
Methodology/Principal Findings: Paired samples from 41 high-risk, initially HIV-uninfected CAPRISA004 participants were analysed prior to HIV acquisition, and during viraemic primary HIV-1 infection. At the time of sampling post-infection five women were seronegative, 11 women were serodiscordant, and 25 women were seropositive by HIV-1 rapid immunoassay. Flow cytometry was used to measure NK and T-cell activation, NK-cell receptor expression, cytotoxic and cytokine-secretory functions, and trafficking marker expression (CCR7, a4b7). Non-parametric statistical tests were used. Both NK cells and Tcells were significantly activated following HIV acquisition (p = 0.03 and p,0.0001, respectively), but correlation between NK-cell and T-cell activation was uncoupled following infection (pre-infection r = 0.68;p,0.0001; post-infection, during primary infection r = 0.074;p = 0.09). Nonetheless, during primary infection NK-cell and T-cell activation correlated with HIV viral load (r = 0.32’p = 0.04 and r = 0.35;p = 0.02, respectively). The frequency of Killer Immunoglobulin-like Receptorexpressing (KIRpos) NK cells increased following HIV acquisition (p = 0.006), and KIRpos NK cells were less activated than KIRneg NK cells amongst individuals sampled while seronegative or serodiscordant (p = 0.001;p,0.0001 respectively). During HIV-1 infection, cytotoxic NK cell responses evaluated after IL-2 stimulation alone, or after co-culture with 721 cells, were impaired (p = 0.006 and p = 0.002, respectively). However, NK-cell IFN-y secretory function was not significantly altered. The frequency of CCR7+ NK cells was elevated during primary infection, particularly at early time-points (p,0.0001).
Conclusions/Significance: Analyses of immune cells before and after HIV infection revealed an increase in both NK-cell activation and KIR expression, but reduced cytotoxicity during acute infection. The increase in frequency of NK cells able to traffic to lymph nodes following HIV infection suggests that these cells may play a role in events in secondary lymphoid tissue
- …
