6,787 research outputs found

    Chaotic Explosions

    Full text link
    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.Comment: 7 pages, 5 figure

    Toric rings, inseparability and rigidity

    Full text link
    This article provides the basic algebraic background on infinitesimal deformations and presents the proof of the well-known fact that the non-trivial infinitesimal deformations of a KK-algebra RR are parameterized by the elements of cotangent module T1(R)T^1(R) of RR. In this article we focus on deformations of toric rings, and give an explicit description of T1(R)T^1(R) in the case that RR is a toric ring. In particular, we are interested in unobstructed deformations which preserve the toric structure. Such deformations we call separations. Toric rings which do not admit any separation are called inseparable. We apply the theory to the edge ring of a finite graph. The coordinate ring of a convex polyomino may be viewed as the edge ring of a special class of bipartite graphs. It is shown that the coordinate ring of any convex polyomino is inseparable. We introduce the concept of semi-rigidity, and give a combinatorial description of the graphs whose edge ring is semi-rigid. The results are applied to show that for mk=k=3m-k=k=3, Gk,mkG_{k,m-k} is not rigid while for mkk4m-k\geq k\geq 4, Gk,mkG_{k,m-k} is rigid. Here Gk,mkG_{k,m-k} is the complete bipartite graph Kmk,kK_{m-k,k} with one edge removed.Comment: 33 pages, chapter 2 of the Book << Multigraded Algebra and Applications>> 2018, Springer International Publishing AG, part of Springer Natur

    Robust Bayesian target detection algorithm for depth imaging from sparse single-photon data

    Get PDF
    This paper presents a new Bayesian model and associated algorithm for depth and intensity profiling using full waveforms from time-correlated single-photon counting (TCSPC) measurements in the limit of very low photon counts (i.e., typically less than 20 photons per pixel). The model represents each Lidar waveform as an unknown constant background level, which is combined in the presence of a target, to a known impulse response weighted by the target intensity and finally corrupted by Poisson noise. The joint target detection and depth imaging problem is expressed as a pixel-wise model selection and estimation problem which is solved using Bayesian inference. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters while accounting for their constraints. In particular, Markov random fields (MRFs) are used to model the joint distribution of the background levels and of the target presence labels, which are both expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm including reversible-jump updates is then proposed to compute the Bayesian estimates of interest. This algorithm is equipped with a stochastic optimization adaptation mechanism that automatically adjusts the parameters of the MRFs by maximum marginal likelihood estimation. Finally, the benefits of the proposed methodology are demonstrated through a series of experiments using real data.Comment: arXiv admin note: text overlap with arXiv:1507.0251

    Electron-vibration coupling constants in positively charged fullerene

    Full text link
    Recent experiments have shown that C60 can be positively field-doped. In that state, fullerene exhibits a higher resistivity and a higher superconducting temperature than the corresponding negatively doped state. A strong intramolecular hole-phonon coupling, connected with the Jahn-Teller effect of the isolated positive ion, is expected to be important for both properties, but the actual coupling strengths are so far unknown. Based on density functional calculations, we determine the linear couplings of the two a_g, six g_g, and eight h_g vibrational modes to the H_u HOMO level of the C60 molecule. The couplings predict a D_5 distortion, and an H_u vibronic ground state for C60^+. They are also used to generate the dimensionless coupling constant which controls the superconductivity and the phonon contribution to the electrical resistivity in the crystalline phase. We find that is 1.4 times larger in positively-charged C60 than in the negatively-doped case. These results are discussed in the context of the available transport data and superconducting temperatures. The role of higher orbital degeneracy in superconductivity is also addressed.Comment: 22 pages - 3 figures. This revision includes few punctuation corrections from proofreadin

    Nonequilibrium electron spin polarization in a double quantum dot. Lande mechanism

    Full text link
    In moderately strong magnetic fields, the difference in Lande g-factors in each of the dots of a coupled double quantum dot device may induce oscillations between singlet and triplet states of the entangled electron pair and lead to a nonequilibrium electron spin polarization. We will show that this polarization may partially survive the rapid inhomogeneous decoherence due to random nuclear magnetic fields.Comment: New version contains figures. New title better reflects the content of the pape

    Lidar waveform based analysis of depth images constructed using sparse single-photon data

    Get PDF
    This paper presents a new Bayesian model and algorithm used for depth and intensity profiling using full waveforms from the time-correlated single photon counting (TCSPC) measurement in the limit of very low photon counts. The model proposed represents each Lidar waveform as a combination of a known impulse response, weighted by the target intensity, and an unknown constant background, corrupted by Poisson noise. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters and their constraints. In particular, a gamma Markov random field (MRF) is used to model the joint distribution of the target intensity, and a second MRF is used to model the distribution of the target depth, which are both expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to compute the Bayesian estimates of interest and perform Bayesian inference. This algorithm is equipped with a stochastic optimization adaptation mechanism that automatically adjusts the parameters of the MRFs by maximum marginal likelihood estimation. Finally, the benefits of the proposed methodology are demonstrated through a serie of experiments using real data

    Towards Supergravity Duals of Chiral Symmetry Breaking in Sasaki-Einstein Cascading Quiver Theories

    Full text link
    We construct a first order deformation of the complex structure of the cone over Sasaki-Einstein spaces Y^{p,q} and check supersymmetry explicitly. This space is a central element in the holographic dual of chiral symmetry breaking for a large class of cascading quiver theories. We discuss a solution describing a stack of N D3 branes and M fractional D3 branes at the tip of the deformed spaces.Comment: 28 pages, no figures. v2: typos, references and a note adde

    Group projector generalization of dirac-heisenberg model

    Full text link
    The general form of the operators commuting with the ground representation (appearing in many physical problems within single particle approximation) of the group is found. With help of the modified group projector technique, this result is applied to the system of identical particles with spin independent interaction, to derive the Dirac-Heisenberg hamiltonian and its effective space for arbitrary orbital occupation numbers and arbitrary spin. This gives transparent insight into the physical contents of this hamiltonian, showing that formal generalizations with spin greater than 1/2 involve nontrivial additional physical assumptions.Comment: 10 page
    corecore