582 research outputs found
Lorentz breaking Effective Field Theory and observational tests
Analogue models of gravity have provided an experimentally realizable test
field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz
invariance at microscopic scales. In this role they have joined, and sometime
anticipated, several quantum gravity models characterized by Lorentz breaking
phenomenology. A crucial difference between these speculations and other ones
associated to quantum gravity scenarios, is the possibility to carry out
observational and experimental tests which have nowadays led to a broad range
of constraints on departures from Lorentz invariance. We shall review here the
effective field theory approach to Lorentz breaking in the matter sector,
present the constraints provided by the available observations and finally
discuss the implications of the persisting uncertainty on the composition of
the ultra high energy cosmic rays for the constraints on the higher order,
analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on
"Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references
adde
Relativistic quantum clocks
The conflict between quantum theory and the theory of relativity is
exemplified in their treatment of time. We examine the ways in which their
conceptions differ, and describe a semiclassical clock model combining elements
of both theories. The results obtained with this clock model in flat spacetime
are reviewed, and the problem of generalizing the model to curved spacetime is
discussed, before briefly describing an experimental setup which could be used
to test of the model. Taking an operationalist view, where time is that which
is measured by a clock, we discuss the conclusions that can be drawn from these
results, and what clues they contain for a full quantum relativistic theory of
time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for
"Workshop on Time in Physics" Zurich 201
Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts
A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts
Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology
Recommended from our members
Comparison of herbarium label data and published medicinal use: herbaria as an underutilized source of ethnobotanical information
The use of herbarium specimens as vouchers to support ethnobotanical surveys is well established. However,
herbaria may be underutilized resources for ethnobotanical research that depends on the analysis of large datasets compiled across multiple sites. Here, we compare two medicinal use datasets, one sourced from
published papers and the other from online herbaria to determine whether herbarium and published data
are comparable and to what extent herbarium specimens add new data and fill gaps in our knowledge of
geographical extent of plant use. Using Brazilian legumes as a case study, we compiled 1400 use reports from
105 publications and 15 Brazilian herbaria. Of the 319 species in 107 genera with cited medicinal uses, 165
(51%) were recorded only in the literature and 55 (17%) only on herbarium labels. Mode of application,
plant part used, or therapeutic use was less often documented by herbarium specimen labels (17% with
information) than publications (70%). However, medicinal use of 21 of the 128 species known from only
one report in the literature was substantiated from independently collected herbarium specimens, and 58
new therapeutic applications, 25 new plant parts, and 16 new modes of application were added for species
known from the literature. Thus, when literature reports are few or information-poor, herbarium data can
both validate and augment these reports. Herbarium data can also provide insights into the history and
geographical extent of use that are not captured in publications
An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner.
Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology-the "structure" of the network-is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment-which is an essentially solved problem-network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks
Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes
Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences. Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-eukaryotic release factor 1 superfamily. Hbs1–Dom34 and the ATPase Rli1 dissociate stalled ribosomes into 40S and 60S subunits. However, the 60S subunits retain the peptidyl-tRNA nascent chains, which recruit the ribosome quality control complex that consists of Rqc1–Rqc2–Ltn1–Cdc48–Ufd1–Npl4. Nascent chains ubiquitylated by the E3 ubiquitin ligase Ltn1 are extracted from the 60S subunit by the ATPase Cdc48–Ufd1–Npl4 and presented to the 26S proteasome for degradation. Failure to degrade the nascent chains leads to protein aggregation and proteotoxic stress in yeast and neurodegeneration in mice. Despite intensive investigations on the ribosome quality control pathway, it is not known how the tRNA is hydrolysed from the ubiquitylated nascent chain before its degradation. Here we show that the Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase. Similar to classical eukaryotic release factor 1, Vms1 activity is dependent on a conserved catalytic glutamine. Evolutionary analysis indicates that yeast Vms1 is the founding member of a clade of eukaryotic release factor 1 homologues that we designate the Vms1-like release factor 1 clade
Large-scale comparative genomic ranking of taxonomically restricted genes (TRGs) in bacterial and archaeal genomes
BACKGROUND: Lineage-specific, or taxonomically restricted genes (TRGs), especially those that are species and strain-specific, are of special interest because they are expected to play a role in defining exclusive ecological adaptations to particular niches. Despite this, they are relatively poorly studied and little understood, in large part because many are still orphans or only have homologues in very closely related isolates. This lack of homology confounds attempts to establish the likelihood that a hypothetical gene is expressed and, if so, to determine the putative function of the protein. METHODOLOGY/PRINCIPAL FINDINGS: We have developed "QIPP" ("Quality Index for Predicted Proteins"), an index that scores the "quality" of a protein based on non-homology-based criteria. QIPP can be used to assign a value between zero and one to any protein based on comparing its features to other proteins in a given genome. We have used QIPP to rank the predicted proteins in the proteomes of Bacteria and Archaea. This ranking reveals that there is a large amount of variation in QIPP scores, and identifies many high-scoring orphans as potentially "authentic" (expressed) orphans. There are significant differences in the distributions of QIPP scores between orphan and non-orphan genes for many genomes and a trend for less well-conserved genes to have lower QIPP scores. CONCLUSIONS: The implication of this work is that QIPP scores can be used to further annotate predicted proteins with information that is independent of homology. Such information can be used to prioritize candidates for further analysis. Data generated for this study can be found in the OrphanMine at http://www.genomics.ceh.ac.uk/orphan_mine
Recommended from our members
Missed, not missing: Phylogenomic evidence for the existence of Avian FoxP3
The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs), which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis) genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus) and the saker falcon (F. cherrug), there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals
Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins
We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The gentic diversity of H pylori is known to be influenced by these genomic elements including prophages who’s geneomes range from 22.6 to 33.0 Kbp. There was a high conservation of integration site shared in over 50% of cases with greater than 40% or prophage genomes harbouring insertion sequences (IS). Furthermore prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. There was evidence of recombination within the genome of some prophages, which resulted in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes
- …
