2,577 research outputs found

    Urban vehicular traffic: fitting the data using a hybrid stochastic model. Part II

    Full text link
    In this second part of our research we used the models presented in \emph{Modeling a vehicular traffic network. Part I} \cite{ogm1} to perform an analysis of the urban traffic as recorded by cameras distributed in a chosen sector of Tigre, a city in the province of Buenos Aires, Argentina. We found that the circulation of vehicles -- the traffic dynamics --, along a whole day, can be described by a hybrid model that is an adapted blend of model 2, for an open linear system, with model 3, which is nonlinear, developed in Part I. The objectives of this work were, firstly, to verify whether the vehicular flux can be modeled as an nn-step stochastic process for its evolution, nn for the time. Secondly, to find out if the model, with its parameters fixed to describe the traffic of a single day, may adequately describe the traffic in other days. Thirdly, to propose changes in the already established set of the urban traffic rules in order to optimize the vehicular flow and to diminish the average time that a vehicle stays idle at the semaphores. We estimate that the goals were achieved satisfactorily within the margins of the experimental errors of the gathered data.Comment: 12 pages, 11 figure

    Batalin-Vilkovisky Integrals in Finite Dimensions

    Full text link
    The Batalin-Vilkovisky method (BV) is the most powerful method to analyze functional integrals with (infinite-dimensional) gauge symmetries presently known. It has been invented to fix gauges associated with symmetries that do not close off-shell. Homological Perturbation Theory is introduced and used to develop the integration theory behind BV and to describe the BV quantization of a Lagrangian system with symmetries. Localization (illustrated in terms of Duistermaat-Heckman localization) as well as anomalous symmetries are discussed in the framework of BV.Comment: 35 page

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    Characterising strongly normalising intuitionistic sequent terms

    Get PDF
    This paper gives a characterisation, via intersection types, of the strongly normalising terms of an intuitionistic sequent calculus (where LJ easily embeds). The soundness of the typing system is reduced to that of a well known typing system with intersection types for the ordinary lambda-calculus. The completeness of the typing system is obtained from subject expansion at root position. This paper's sequent term calculus integrates smoothly the lambda-terms with generalised application or explicit substitution. Strong normalisability of these terms as sequent terms characterises their typeability in certain "natural'' typing systems with intersection types. The latter are in the natural deduction format, like systems previously studied by Matthes and Lengrand et al., except that they do not contain any extra, exceptional rules for typing generalised applications or substitution

    Curricular orientations to real-world contexts in mathematics

    Get PDF
    A common claim about mathematics education is that it should equip students to use mathematics in the ‘real world’. In this paper, we examine how relationships between mathematics education and the real world are materialised in the curriculum across a sample of eleven jurisdictions. In particular, we address the orientation of the curriculum towards application of mathematics, the ways that real-world contexts are positioned within the curriculum content, the ways in which different groups of students are expected to engage with real-world contexts, and the extent to which high-stakes assessments include real-world problem solving. The analysis reveals variation across jurisdictions and some lack of coherence between official orientations towards use of mathematics in the real world and the ways that this is materialised in the organisation of the content for students

    Probabilistic Anonymity

    Get PDF
    The concept of anonymity comes into play in a wide range of situations, varying from voting and anonymous donations to postings on bulletin boards and sending mails. A formal definition of this concept has been given in literature in terms of nondeterminism. In this paper, we investigate a notion of anonymity based on probability theory, and we we discuss the relation with the nondeterministic one. We then formulate this definition in terms of observables for processes in the probabilistic pipi-calculus, and propose a method to verify automatically the anonymity property. We illustrate the method by using the example of the dining cryptographers

    Design of X-Concentric Braced Steel Frame Systems Using an Equivalent Stiffness in a Modal Elastic Analysis

    Get PDF
    In this work, a general method for the design of concentric braced steel frames (CBF) with active tension diagonal bracings, applicable to single- and multi-storey structures, is presented. The method is based on the use of an elastic modal analysis with a response spectrum, which is carried out using an appropriate modified elastic stiffness of diagonal bracings. The reliability of the proposed method is validated through the analysis of significant case studies, making a series of numerical comparisons carrying out time-history non-linear dynamic analysis
    corecore