101 research outputs found
Low-speed impact craters in loose granular media
We report on craters formed by balls dropped into dry, non-cohesive, granular
media. By explicit variation of ball density , diameter , and
drop height , the crater diameter is confirmed to scale as the 1/4 power of
the energy of the ball at impact:
. Against expectation, a different
scaling law is discovered for the crater depth:
. The scaling with properties of
the medium is also established. The crater depth has significance for granular
mechanics in that it relates to the stopping force on the ball.Comment: experiment; 4 pages, 3 figure
Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models
The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3
Wilson lines to the MSSM with three right-handed neutrino supermultiplets and
gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional
subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is
analyzed. It is shown that there is a unique basis for which the initial soft
supersymmetry breaking parameters are uncorrelated and for which the U(1) x
U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines
"turn on" at different scales, there is an intermediate regime with either a
left-right or a Pati-Salam type model. We compute their spectra directly from
string theory, and adjust the associated mass parameter so that all gauge
parameters exactly unify. A detailed analysis of the running gauge couplings
and soft gaugino masses is presented.Comment: 59 pages, 9 figure
Dark matter scenarios in the minimal SUSY B-L model
We perform a study of the dark matter candidates of a constrained version of
the minimal R-parity-conserving supersymmetric model with a gauged
. It turns out that there are four additional candidates for dark
matter in comparison to the MSSM: two kinds of neutralino, which either
correspond to the gaugino of the or to a fermionic bilepton, as
well as "right-handed" CP-even and -odd sneutrinos. The correct dark matter
relic density of the neutralinos can be obtained due to different mechanisms
including new co-annihilation regions and resonances. The large additional
Yukawa couplings required to break the radiatively often lead to
large annihilation cross sections for the sneutrinos. The correct treatment of
gauge kinetic mixing is crucial to the success of some scenarios. All
candidates are consistent with the exclusion limits of Xenon100.Comment: 45 pages, 22 figures; v2: extended discussion of direct detection
cross section, matches published versio
B-L Cosmic Strings in Heterotic Standard Models
E_{8} X E_{8} heterotic string and M-theory, when compactified on smooth
Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken
N=1 supersymmetric theories with the exact matter spectrum of the MSSM,
including three right-handed neutrinos and one Higgs-Higgs conjugate pair of
supermultiplets. These vacua have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge
group of the standard model augmented by an additional gauged U(1)_{B-L}. Their
minimal content requires that the B-L symmetry be spontaneously broken by a
vacuum expectation value of at least one right-handed sneutrino. The soft
supersymmetry breaking operators can induce radiative breaking of the B-L gauge
symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is
shown that U(1)_{B-L} cosmic strings occur in this context, potentially with
both bosonic and fermionic superconductivity. We present a numerical analysis
that demonstrates that boson condensates can, in principle, form for theories
of this type. However, the weak Yukawa and gauge couplings of the right-handed
sneutrino suggests that bosonic superconductivity will not occur in the
simplest vacua in this context. The electroweak phase transition also disallows
fermion superconductivity, although substantial bound state fermion currents
can exist.Comment: 41 pages, 5 figure
Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories
A numerical algorithm is presented for explicitly computing the gauge
connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds.
To illustrate this algorithm, we calculate the connections on stable monad
bundles defined on the K3 twofold and Quintic threefold. An error measure is
introduced to determine how closely our algorithmic connection approximates a
solution to the Hermitian Yang-Mills equations. We then extend our results by
investigating the behavior of non slope-stable bundles. In a variety of
examples, it is shown that the failure of these bundles to satisfy the
Hermitian Yang-Mills equations, including field-strength singularities, can be
accurately reproduced numerically. These results make it possible to
numerically determine whether or not a vector bundle is slope-stable, thus
providing an important new tool in the exploration of heterotic vacua.Comment: 52 pages, 15 figures. LaTex formatting of figures corrected in
version 2
Two loop electroweak corrections to and in the B-LSSM
The rare decays and are important to research new physics beyond standard model. In
this work, we investigate two loop electroweak corrections to and in the minimal
supersymmetric extension of the SM with local gauge symmetry (B-LSSM),
under a minimal flavor violating assumption for the soft breaking terms. In
this framework, new particles and new definition of squarks can affect the
theoretical predictions of these two processes, with respect to the MSSM.
Considering the constraints from updated experimental data, the numerical
results show that the B-LSSM can fit the experimental data for the branching
ratios of and . The
results of the rare decays also further constrain the parameter space of the
B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ
R-parity Conservation via the Stueckelberg Mechanism: LHC and Dark Matter Signals
We investigate the connection between the conservation of R-parity in
supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L
vector gauge boson. It is shown that with universal boundary conditions for
soft terms of sfermions in each family at the high scale and with the
Stueckelberg mechanism for generating mass for the B-L gauge boson present in
the theory, electric charge conservation guarantees the conservation of
R-parity in the minimal B-L extended supersymmetric standard model. We also
discuss non-minimal extensions. This includes extensions where the gauge
symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a
hidden sector gauge group. In this case the presence of the additional U(1)_X
allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV
region overcoming the multi-TeV LEP constraints. The possible tests of the
models at colliders and in dark matter experiments are analyzed including
signals of a low mass Z' resonance and the production of spin zero bosons and
their decays into two photons. In this model two types of dark matter
candidates emerge which are Majorana and Dirac particles. Predictions are made
for a possible simultaneous observation of new physics events in dark matter
experiments and at the LHC.Comment: 38 pages, 7 fig
Soft corals assemblages in deep environments of the Menorca Channel (Western Mediterranean Sea)
Image-based research in mesophotic and deep environments of the Mediterranean Sea has significantly increased during the past decades. So far, this research has been focused on the ecology of key structuring organisms such as scleractinians, antipatharians, gorgonians or large demosponges. However, the ecology of true soft corals has barely been studied and is still in a very preliminary stage. To overcome this situation, soft coral assemblages in shelf and slope environments of the Menorca Channel (Western Mediterranean Sea) have been studied through the quantitative analysis of 85 video transect recorded over 38500 m2. Highest soft coral diversity was encountered on the shelf edge, resembling deep Mediterranean gorgonian patterns. Three soft coral assemblages, segregated by depth, substrate, and slope were identified: two monospecific ones composed by Nidalia studeriand Alcyonium palmatum, respectively and a multispecific one composed by Paralcyonium spinulosum, Alcyonium
sp., Chironephthya mediterranea and Daniela koreni. The evaluated species presented average densities within the same range as other deep Mediterranean anthozoans ranging from 1 to 9 col.·m−2. However, N. studeri and P. spinulosum punctually formed dense monospecific aggregations, reaching maximum densities of 49 col.·m−2 and 60 col.·m−2 respectively. Both species monopolized vast extensions of the continental shelf and shelf edge. The identification and ecological characterization of these assemblages brings new insight about deep Mediterranean anthozoan communities, and provides baseline for future management plans in the study area.En prensa3,26
The Minimal Theory for R-parity Violation at the LHC
We investigate the simplest gauge theory for spontaneous R-parity breaking
and its testability at the LHC. This theory based on a local B-L gauge symmetry
can be considered as the simplest framework for understanding the origin of the
R-parity violating interactions, giving rise to potential lepton number
violating signals and suppressed baryon number violating operators. The full
spectrum of the theory and the constraints coming from neutrino masses are
analyzed in great detail. We discuss the proton decay issue and the possible
dark matter candidates. In order to assess the testability of the theory we
study the properties of the new gauge boson, the neutralino decays and the main
production channels for the charged sleptons at the LHC. We find that the
channels with four charged leptons, three of them with the same sign, and four
jets give us the most striking signals for the testability of lepton number
violation at the LHC.Comment: minor corrections, to appear in JHE
Diversity, structure and spatial distribution of megabenthic communities in Cap de Creus continental shelf and submarine canyon (NW Mediterranean)
The continental shelf and submarine canyon off Cap de Creus (NW Mediterranean) were declared a Site of
Community Importance (SCI) within the Natura 2000 Network in 2014. Implementing an effective management
plan to preserve its biological diversity and monitor its evolution through time requires a detailed character ization of its benthic ecosystem. Based on 60 underwater video transects performed between 2007 and 2013
(before the declaration of the SCI), we thoroughly describe the composition and structure of the main mega benthic communities dwelling from the shelf down to 400 m depth inside the submarine canyon. We then
mapped the spatial distribution of the benthic communities using the Random Forest algorithm, which incor porated geomorphological and oceanographic layers as predictors, as well as the intensity of the bottom-trawling
fishing fleet. Although the study area has historically been exposed to commercial fishing practices, it still holds a
rich benthic ecosystem with over 165 different invertebrate (morpho)species of the megafauna identified in the
video footage, which form up to 9 distinct megabenthic communities. The continental shelf is home to coral
gardens of the sea fan Eunicella cavolini, sea pen and soft coral assemblages, dense beds of the crinoid Leptometra
phalangium, diverse sponge grounds and massive aggregations of the brittle star Ophiothrix fragilis. The submarine
canyon off Cap de Creus is characterized by a cold-water coral community dominated by the scleractinian coral
Madrepora oculata, found in association with several invertebrate species including oysters, brachiopods and a
variety of sponge species, as well as by a community dominated by cerianthids and sea urchins, mostly in
sedimentary areas. The benthic communities identified in the area were then compared with habitats/biocenoses
described in reference habitat classification systems that consider circalittoral and bathyal environments of the
Mediterranean. The complex environmental setting characteristic of the marine area off Cap de Creus likely
produces the optimal conditions for communities dominated by suspension- and filter-feeding species to develop.
The uniqueness of this ecosystem and the anthropogenic pressures that it faces should prompt the development of
effective management actions to ensure the long-term conservation of the benthic fauna representative of this
marine area3,26
- …
